

INTRODUCTION TO A LEVEL MATHS AT RMGS

The Mathematics Department is committed to ensuring that you make good progress throughout your A level course.

To help your transition from GCSE Maths to A level Maths we have prepared this booklet.

It is vitally important that you spend some time working through the questions in this booklet over the summer (answers are at the back so you can check your own work) - you will need to have a good knowledge of these topics before you commence your course in September. You should attempt the majority of questions in each exercise - not necessarily every question, but enough to ensure you understand the topic thoroughly. If you get questions wrong you should revise the material and try again until you are getting the majority of questions correct.

You will have met all the topics before at GCSE and it's important that you do not forget all that you have learnt. The best way to do this is to continually practise these skills like an athlete trains to compete in their event. Work through the introduction to each section, making sure that you understand the examples, then tackle the exercise.

You can use www.examsolution.net HegartyMaths or MyMaths to help with revision. The login for MyMaths is:
User: rainham
Password : shape
A-Level maths is a demanding course and good skills in the areas covered within this booklet will be paramount to your success.

CONTENTS

Chapter 1 Removing brackets 3
Chapter 2 Linear equations 5
Chapter 3 Simultaneous equations 9
Chapter 4 Factors 11
Chapter 5 Change the subject of the formula 14
Chapter 6 Solving quadratic equations 17
Chapter 7 Indices 19
Chapter 8 Surds 24

Chapter 1: REMOVING BRACKETS

To remove a single bracket, we multiply every term in the bracket by the number or the expression on the outside:

Examples

1)

2)

$$
\begin{aligned}
-2(2 x-3) & =(-2)(2 x)+(-2)(-3) \\
& =-4 x+6
\end{aligned}
$$

To expand two brackets, we must multiply everything in the first bracket by everything in the second bracket. We can do this in a variety of ways, including

* the smiley face method
* FOIL (Fronts Outers Inners Lasts)
* using a grid.

Examples:

1)

$$
(x+1)(x+2)=x(x+2)+1(x+2)
$$

or

or

	x	1
x	x^{2}	x
2	$2 x$	2

$$
\begin{aligned}
(x+1)(x+2) & =x^{2}+2 x+x+2 \\
& =x^{2}+3 x+2
\end{aligned}
$$

2)

$$
\begin{aligned}
(x-2)(2 x+3) & =x(2 x+3)-2(2 x+3) \\
& =2 x^{2}+3 x-4 x-6 \\
& =2 x^{2}-x-6
\end{aligned}
$$

or

or

	x	-2
$2 x$	$2 x^{2}$	$-4 x$
3	$3 x$	-6

$$
\begin{aligned}
(2 x+3)(x-2) & =2 x^{2}+3 x-4 x-6 \\
& =2 x^{2}-x-6
\end{aligned}
$$

1. $7(4 x+5)$
2. $-3(5 x-7)$
3. $5 a-4(3 a-1)$
4. $4 y+y(2+3 y)$
5. $-3 x-(x+4)$
6. $\quad 5(2 x-1)-(3 x-4)$
7. $(x+2)(x+3)$
8. $\quad(t-5)(t-2)$
9. $(2 x+3 y)(3 x-4 y)$
10. $4(x-2)(x+3)$
11. $(2 y-1)(2 y+1)$
12. $(3+5 x)(4-x)$

Two Special Cases

Perfect Square:

$(x+a)^{2}=(x+a)(x+a)=x^{2}+2 a x+a^{2}$
$(2 x-3)^{2}=(2 x-3)(2 x-3)=4 x^{2}-12 x+9$

Difference of two squares:

$$
\begin{aligned}
(x-a)(x+a) & =x^{2}-a^{2} \\
(x-3)(x+3) & =x^{2}-3^{2} \\
& =x^{2}-9
\end{aligned}
$$

EXERCISE B Multiply out

1. $(x-1)^{2}$
2. $(3 x+5)^{2}$
3. $(7 x-2)^{2}$
4. $(x+2)(x-2)$
5. $(3 x+1)(3 x-1)$
6. $(5 y-3)(5 y+3)$

Chapter 2: LINEAR EQUATIONS

When solving an equation, you must remember that whatever you do to one side must also be done to the other. You are therefore allowed to

- add the same amount to both side
- subtract the same amount from each side
- multiply the whole of each side by the same amount
- divide the whole of each side by the same amount.

If the equation has unknowns on both sides, you should collect all the letters onto the same side of the equation.

If the equation contains brackets, you should start by expanding the brackets.
A linear equation is an equation that contains numbers and terms in x. A linear equation does not contain any x^{2} or x^{3} terms.

Example 1: Solve the equation $64-3 x=25$
Solution: There are various ways to solve this equation. One approach is as follows:
Step 1: Add $3 x$ to both sides (so that the x term is positive): $\quad 64=3 x+25$
Step 2: Subtract 25 from both sides:

$$
39=3 x
$$

Step 3: Divide both sides by 3:
$13=x$
So the solution is $x=13$.

Example 2: Solve the equation $6 x+7=5-2 x$.

Solution:

Step 1: Begin by adding $2 x$ to both sides

$$
8 x+7=5
$$

(to ensure that the x terms are together on the same side)
Step 2: Subtract 7 from each side:

$$
8 x=-2
$$

Step 3: Divide each side by 8 :

$$
x=-1 / 4
$$

Exercise A: Solve the following equations, showing each step in your working:

1) $2 x+5=19$
2) $5 x-2=13$
3) $11-4 x=5$
4) $5-7 x=-9$
5) $11+3 x=8-2 x$
6) $7 x+2=4 x-5$

AS Mathematics - Induction Booklet
Example 3: Solve the equation $\quad 2(3 x-2)=20-3(x+2)$
Step 1: Multiply out the brackets: $\quad 6 x-4=20-3 x-6$
(taking care of the negative signs)
Step 2: Simplify the right hand side: $\quad 6 x-4=14-3 x$
Step 3: Add 3x to each side: $\quad 9 x-4=14$
Step 4: Add 4:
$9 x=18$
Step 5: Divide by 9:
$x=2$
Exercise B: Solve the following equations.

1) $5(2 x-4)=4 \quad$ 2) $4(2-x)=3(x-9)$
2) $8-(x+3)=4$
3) $14-3(2 x+3)=2$

EQUATIONS CONTAINING FRACTIONS

When an equation contains a fraction, the first step is usually to multiply through by the denominator of the fraction. This ensures that there are no fractions in the equation.

Example 4: Solve the equation $\frac{y}{2}+5=11$

Solution:

Step 1: Multiply through by 2 (the denominator in the fraction): $y+10=22$
Step 2: Subtract 10:

Example 5: Solve the equation $\frac{1}{3}(2 x+1)=5$

Solution:

Step 1: Multiply by 3 (to remove the fraction) $2 x+1=15$
Step 2: Subtract 1 from each side

$$
2 x=14
$$

Step 3: Divide by 2
$x=7$

When an equation contains two fractions, you need to multiply by the lowest common denominator. This will then remove both fractions.

Example 6: Solve the equation $\frac{x+1}{4}+\frac{x+2}{5}=2$

Solution:

Step 1: Find the lowest common denominator:
The smallest number that both 4 and 5 divide into is 20 .

Step 2: Multiply both sides by the lowest common denominator
$\frac{20(x+1)}{4}+\frac{20(x+2)}{5}=40$

Step 3: Simplify the left hand side:
$\frac{2^{5} \sigma(x+1)}{A}+\frac{2^{4} \sigma(x+2)}{\not D}=40$
$5(x+1)+4(x+2)=40$
Step 4: Multiply out the brackets:
$5 x+5+4 x+8=40$
Step 5: Simplify the equation:
$9 x+13=40$
Step 6: Subtract 13
$9 x=27$
Step 7: Divide by 9:
$x=3$

Example 7: Solve the equation $x+\frac{x-2}{4}=2-\frac{3-5 x}{6}$
Solution: The lowest number that 4 and 6 go into is 12 . So we multiply every term by 12 :

	$12 x+\frac{12(x-2)}{4}=24-\frac{12(3-5 x)}{6}$
Simplify	$12 x+3(x-2)=24-2(3-5 x)$
Expand brackets	$12 x+3 x-6=24-6+10 x$
Simplify	$15 x-6=18+10 x$
Subtract $10 x$	$5 x-6=18$
Add 6	$5 x=24$
Divide by 5	$x=4.8$

Exercise C: Solve these equations

1) $\quad \frac{1}{2}(x+3)=5$
2) $\frac{2 x}{3}-1=\frac{x}{3}+4$
3) $\frac{y}{4}+3=5-\frac{y}{3}$
4) $\frac{x-2}{7}=2+\frac{3-x}{14}$
5) $\frac{7 x-1}{2}=13-x$
6) $\frac{y-1}{2}+\frac{y+1}{3}=\frac{2 y+5}{6}$
7) $2 x+\frac{x-1}{2}=\frac{5 x+3}{3}$
8) $2-\frac{5}{x}=\frac{10}{x}-1$

FORMING EQUATIONS

Example 8: Find three consecutive numbers so that their sum is 96 .
Solution: Let the first number be n, then the second is $n+1$ and the third is $n+2$.
Therefore

$$
\begin{aligned}
& n+(n+1)+(n+2)=96 \\
& 3 n+3=96 \\
& 3 n=93 \\
& n=31
\end{aligned}
$$

So the numbers are 31,32 and 33 .

Exercise D:

1) Find 3 consecutive even numbers so that their sum is 108.
2) The perimeter of a rectangle is 79 cm . One side is three times the length of the other. Form an equation and hence find the length of each side.
3) Two girls have 72 photographs of celebrities between them. One gives 11 to the other and finds that she now has half the number her friend has.
Form an equation, letting n be the number of photographs one girl had at the beginning. Hence find how many each has now.

Chapter 3: SIMULTANEOUS EQUATIONS

$\begin{array}{lll}\text { An example of a pair of simultaneous equations is } & 3 x+2 y=8 \\ 5 x+y=11\end{array}$ (2)

$$
5 x+y=11
$$

In these equations, x and y stand for two numbers. We can solve these equations in order to find the values of x and y by eliminating one of the letters from the equations.

In these equations it is simplest to eliminate y. We do this by making the coefficients of y the same in both equations. This can be achieved by multiplying equation (2) by 2 , so that both equations contain $2 y$:

$$
\begin{array}{cl}
3 x+2 y=8 & (1) \\
10 x+2 y=22 & \\
2 \times(2)=(3)
\end{array}
$$

To eliminate the y terms, we subtract equation (3) from equation (1). We get: $7 x=14$

$$
\text { i.e. } x=2
$$

To find y, we substitute $x=2$ into one of the original equations. For example if we put it into (2):

$$
\begin{aligned}
10+y & =11 \\
y & =1
\end{aligned}
$$

Therefore the solution is $x=2, y=1$.
Remember: You can check your solutions by substituting both x and y into the original equations.

Example: Solve \quad| $2 x+5 y=16$ | (1) |
| :--- | :--- |
| $3 x-4 y=1$ | | (2)

Solution: We begin by getting the same number of x or y appearing in both equation. We can get $20 y$ in both equations if we multiply the top equation by 4 and the bottom equation by 5 :

$$
\begin{aligned}
& 8 x+20 y=64 \\
& 15 x-20 y=5
\end{aligned}
$$

As the SIGNS in front of $20 y$ are DIFFERENT, we can eliminate the y terms from the equations by ADDING:

$$
\begin{array}{ll}
& 23 x=69 \\
\text { i.e. } & x=3
\end{array}
$$

Substituting this into equation (1) gives:

$$
\begin{aligned}
6+5 y & =16 \\
5 y & =10 \\
y & =2
\end{aligned}
$$

So...
The solution is $x=3, y=2$.

AS Mathematics - Induction Booklet

Exercise:

Solve the pairs of simultaneous equations in the following questions:

1) $\quad \begin{aligned} & x+2 y=7 \\ & 3 x+2 y=9\end{aligned}$
2) $x+3 y=0$
$3 x+2 y=-7$
3) $3 x-2 y=4$ $2 x+3 y=-6$
4) $9 x-2 y=25$
$4 x-5 y=7$
5) $4 a+3 b=22$
$5 a-4 b=43$
6) $3 p+3 q=15$
$2 p+5 q=14$

Chapter 4: FACTORISING

Common factors

We can factorise some expressions by taking out a common factor.
Example 1: Factorise $12 x-30$
Solution: 6 is a common factor to both 12 and 30 . We can therefore factorise by taking 6 outside a bracket:

$$
12 x-30=6(2 x-5)
$$

Example 2: Factorise $6 x^{2}-2 x y$
Solution: $\quad 2$ is a common factor to both 6 and 2 . Both terms also contain an x. So we factorise by taking $2 x$ outside a bracket.

$$
6 x^{2}-2 x y=2 x(3 x-y)
$$

Example 3: Factorise $9 x^{3} y^{2}-18 x^{2} y$
Solution: $\quad 9$ is a common factor to both 9 and 18 .
The highest power of x that is present in both expressions is x^{2}.
There is also a y present in both parts.
So we factorise by taking $9 x^{2} y$ outside a bracket:

$$
9 x^{3} y^{2}-18 x^{2} y=9 x^{2} y(x y-2)
$$

Example 4: Factorise $3 x(2 x-1)-4(2 x-1)$
Solution: There is a common bracket as a factor.
So we factorise by taking $(2 x-1)$ out as a factor.
The expression factorises to $(2 x-1)(3 x-4)$

Exercise A

Factorise each of the following

1) $3 x+x y$
2) $4 x^{2}-2 x y$
3) $p q^{2}-p^{2} q$
4) $3 p q-9 q^{2}$
5) $2 x^{3}-6 x^{2}$
6) $8 a^{5} b^{2}-12 a^{3} b^{4}$
7) $5 y(y-1)+3(y-1)$

Factorising quadratics

Simple quadratics: Factorising quadratics of the form $x^{2}+b x+c$
The method is:
Step 1: Form two brackets ($x \ldots)(x \ldots)$
Step 2: Find two numbers that multiply to give c and add to make b. These two numbers get written at the other end of the brackets.

Example 1: Factorise $x^{2}-9 x-10$.
Solution: We need to find two numbers that multiply to make -10 and add to make -9. These numbers are -10 and 1 .
Therefore $x^{2}-9 x-10=(x-10)(x+1)$.
General quadratics: Factorising quadratics of the form $a x^{2}+b x+c$
There are lots of methods for this - use what you learnt in year 11
This is just one method:
Step 1: Find two numbers that multiply together to make $a c$ and add to make b.
Step 2: Split up the $b x$ term using the numbers found in step 1.
Step 3: Factorise the front and back pair of expressions as fully as possible.
Step 4: There should be a common bracket. Take this out as a common factor.

Example 2: Factorise $6 x^{2}+x-12$.
Solution: We need to find two numbers that multiply to make $6 \times-12=-72$ and add to make 1 . These two numbers are -8 and 9 .

Therefore, $\quad 6 x^{2}+x-12=6 \underbrace{x^{2}-8 x}+\underbrace{9 x-12}$

$$
=2 x(3 x-4)+3(3 x-4) \quad \text { (the two brackets must be identical) }
$$

$$
=(3 x-4)(2 x+3)
$$

Difference of two squares: Factorising quadratics of the form $x^{2}-a^{2}$

Remember that $x^{2}-a^{2}=(x+a)(x-a)$.
Therefore: $\quad x^{2}-9=x^{2}-3^{2}=(x+3)(x-3)$

$$
16 x^{2}-25=(2 x)^{2}-5^{2}=(2 x+5)(2 x-5)
$$

Also notice that:
$2 x^{2}-8=2\left(x^{2}-4\right)=2(x+4)(x-4)$
and

$$
3 x^{3}-48 x y^{2}=3 x\left(x^{2}-16 y^{2}\right)=3 x(x+4 y)(x-4 y)
$$

Factorising by pairing

We can factorise expressions like $2 x^{2}+x y-2 x-y$ using the method of factorising by pairing:

$$
\begin{aligned}
2 x^{2}+x y-2 x-y & =x(2 x+y)-1(2 x+y) & & \text { (factorise front and back pairs, ensuring both } \\
& =(2 x+y)(x-1) & & \text { brackets are identical) }
\end{aligned}
$$

Exercise B

Factorise

1) $x^{2}-x-6$
2) $x^{2}+6 x-16$
3) $2 x^{2}+5 x+2$
4) $2 x^{2}-3 x \quad$ (factorise by taking out a common factor)
5) $3 x^{2}+5 x-2$
6) $2 y^{2}+17 y+21$
7) $7 y^{2}-10 y+3$
8) $10 x^{2}+5 x-30$
9) $4 x^{2}-25$
10) $x^{2}-3 x-x y+3 y^{2}$
11) $4 x^{2}-12 x+8$
12) $16 m^{2}-81 n^{2}$
13) $4 y^{3}-9 a^{2} y$
14) $8(x+1)^{2}-2(x+1)-10$

Chapter 5: CHANGING THE SUBJECT OF A FORMULA

We can use algebra to change the subject of a formula. Rearranging a formula is similar to solving an equation - we must do the same to both sides in order to keep the equation balanced.

Example 1: Make x the subject of the formula $y=4 x+3$.

Solution:

Subtract 3 from both sides:

$$
\begin{aligned}
& y=4 x+3 \\
& y-3=4 x \\
& \frac{y-3}{4}=x
\end{aligned}
$$

So $x=\frac{y-3}{4}$ is the same equation but with x the subject.

Example 2: Make x the subject of $y=2-5 x$
Solution: Notice that in this formula the x term is negative.

$$
\begin{array}{ll}
y=2-5 x \\
y+5 x=2 \\
5 x=2-y & \text { (the } x \text { term is now positive) } \\
x=\frac{2-y}{5} & \\
\hline
\end{array}
$$

Subtract y from both sides
Divide both sides by 5

Example 3: The formula $C=\frac{5(F-32)}{9}$ is used to convert between ${ }^{\circ}$ Fahrenheit and ${ }^{\circ}$ Celsius.
We can rearrange to make F the subject.

$$
C=\frac{5(F-32)}{9}
$$

Multiply by 9
Expand the brackets
Add 160 to both sides
Divide both sides by 5
$9 C=5(F-32) \quad$ (this removes the fraction)
$9 C=5 F-160$
$9 C+160=5 F$
$\frac{9 C+160}{5}=F$

Therefore the required rearrangement is $F=\frac{9 C+160}{5}$.

Exercise A

Make x the subject of each of these formulae:

1) $y=7 x-1$
2) $y=\frac{x+5}{4}$
3) $4 y=\frac{x}{3}-2$
4) $y=\frac{4(3 x-5)}{9}$

Example 4: Make x the subject of $x^{2}+y^{2}=w^{2}$

Solution:	$x^{2}+y^{2}=w^{2}$
Subtract y^{2} from both sides:	$x^{2}=w^{2}-y^{2} \quad$ (this isolates the term involving x)
Square root both sides:	$x= \pm \sqrt{w^{2}-y^{2}}$

Remember that you can have a positive or a negative square root. We cannot simplify the answer any more.

Example 5: Make a the subject of the formula $t=\frac{1}{4} \sqrt{\frac{5 a}{h}}$

Solution:

$$
t=\frac{1}{4} \sqrt{\frac{5 a}{h}}
$$

Multiply by 4

$$
4 t=\sqrt{\frac{5 a}{h}}
$$

Square both sides

$$
16 t^{2}=\frac{5 a}{h}
$$

Multiply by h :
$16 t^{2} h=5 a$
Divide by 5 :

$$
\frac{16 t^{2} h}{5}=a
$$

Exercise B:

Make t the subject of each of the following

1) $\quad P=\frac{w t}{32 r}$
2) $\quad P=\frac{w t^{2}}{32 r}$
3) $\quad V=\frac{1}{3} \pi t^{2} h$
4) $P=\sqrt{\frac{2 t}{g}}$
5) $\quad P a=\frac{w(v-t)}{g}$
6) $r=a+b t^{2}$

More difficult examples

Sometimes the variable that we wish to make the subject occurs in more than one place in the formula. In these questions, we collect the terms involving this variable on one side of the equation, and we put the other terms on the opposite side.

Example 6: Make t the subject of the formula $a-x t=b+y t$
Solution:

$$
a-x t=b+y t
$$

Start by collecting all the t terms on the right hand side:
Add $x t$ to both sides:

$$
a=b+y t+x t
$$

Now put the terms without a t on the left hand side:
Subtract b from both sides:

$$
a-b=y t+x t
$$

Factorise the RHS:

$$
a-b=t(y+x)
$$

Divide by $(y+x)$:

$$
\frac{a-b}{y+x}=t
$$

So the required equation is

$$
t=\frac{a-b}{y+x}
$$

Example 7: Make W the subject of the formula $T-W=\frac{W a}{2 b}$
Solution: This formula is complicated by the fractional term. We begin by removing the fraction:
Multiply by $2 b$:

$$
2 b T-2 b W=W a
$$

Add $2 b W$ to both sides:
$2 b T=W a+2 b W \quad$ (this collects the W's together)
Factorise the RHS:
$2 b T=W(a+2 b)$
Divide both sides by $a+2 b$:
$W=\frac{2 b T}{a+2 b}$

Exercise C

Make x the subject of these formulae:

1) $a x+3=b x+c$
2) $3(x+a)=k(x-2)$
3) $y=\frac{2 x+3}{5 x-2}$
4) $\frac{x}{a}=1+\frac{x}{b}$

Chapter 6: SOLVING QUADRATIC EQUATIONS

A quadratic equation has the form $a x^{2}+b x+c=0$.
There are two methods that are commonly used for solving quadratic equations:

* factorising
* the quadratic formula

Note that not all quadratic equations can be solved by factorising. The quadratic formula can always be used however.

Method 1: Factorising

Make sure that the equation is rearranged so that the right hand side is 0 . It usually makes it easier if the coefficient of x^{2} is positive.

Example 1: Solve $x^{2}-3 x+2=0$
Factorise

$$
(x-1)(x-2)=0
$$

Either $(x-1)=0$ or $(x-2)=0$
So the solutions are $x=1$ or $x=2$
Note: The individual values $x=1$ and $x=2$ are called the roots of the equation.

Example 2: Solve $x^{2}-2 x=0$
Factorise: $\quad x(x-2)=0$
Either $x=0$ or $(x-2)=0$
So $x=0$ or $x=2$

Method 2: Using the formula

Recall that the roots of the quadratic equation $a x^{2}+b x+c=0$ are given by the formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example 3: Solve the equation $2 x^{2}-5=7-3 x$
Solution: First we rearrange so that the right hand side is 0 . We get $2 x^{2}+3 x-12=0$ We can then tell that $a=2, b=3$ and $c=-12$.
Substituting these into the quadratic formula gives:

$$
x=\frac{-3 \pm \sqrt{3^{2}-4 \times 2 \times(-12)}}{2 \times 2}=\frac{-3 \pm \sqrt{105}}{4} \quad \text { (this is the surd form for the solutions) }
$$

If we have a calculator, we can evaluate these roots to get: $x=1.81$ or $x=-3.31$

EXERCISE

1) Use factorisation to solve the following equations:
a) $x^{2}+3 x+2=0$
b) $x^{2}-3 x-4=0$
c) $\quad x^{2}=15-2 x$
2) Find the roots of the following equations:
a) $x^{2}+3 x=0$
b) $\quad x^{2}-4 x=0$
c) $\quad 4-x^{2}=0$
3) Solve the following equations either by factorising or by using the formula:
a) $6 x^{2}-5 x-4=0$
b) $8 x^{2}-24 x+10=0$
4) Use the formula to solve the following equations to 3 significant figures. Some of the equations can't be solved.
a) $x^{2}+7 x+9=0$
b) $6+3 x=8 x^{2}$
c) $\quad 4 x^{2}-x-7=0$
d) $x^{2}-3 x+18=0$
e) $3 x^{2}+4 x+4=0$
f) $3 x^{2}=13 x-16$

Chapter 7: INDICES

Basic rules of indices

$$
y^{4} \text { means } y \times y \times y \times y \text {. }
$$

4 is called the index (plural: indices), power or exponent of y.

There are 3 basic rules of indices:

1) $a^{m} \times a^{n}=a^{m+n}$
e.g. $\quad 3^{4} \times 3^{5}=3^{9}$
2) $\quad a^{m} \div a^{n}=a^{m-n}$
e.g. $\quad 3^{8} \times 3^{6}=3^{2}$
3) $\quad\left(a^{m}\right)^{n}=a^{m n}$
e.g. $\quad\left(3^{2}\right)^{5}=3^{10}$

Further examples

$$
y^{4} \times 5 y^{3}=5 y^{7}
$$

$$
4 a^{3} \times 6 a^{2}=24 a^{5} \quad \text { (multiply the numbers and multiply the } a \text { 's) }
$$

$$
2 c^{2} \times\left(-3 c^{6}\right)=-6 c^{8} \quad \text { (multiply the numbers and multiply the } c^{\prime} \text { s) }
$$

$$
24 d^{7} \div 3 d^{2}=\frac{24 d^{7}}{3 d^{2}}=8 d^{5} \quad \text { (divide the numbers and divide the } d \text { terms i.e. by subtracting }
$$ the powers)

Exercise A

Simplify the following:

1) $b \times 5 b^{5}=$ (Remember that $b=b^{1}$)
2) $\quad 3 c^{2} \times 2 c^{5}=$
3) $b^{2} c \times b c^{3}=$
4) $2 n^{6} \times\left(-6 n^{2}\right)=$
5) $8 n^{8} \div 2 n^{3}=$
6) $\quad d^{11} \div d^{9}=$
7) $\left(a^{3}\right)^{2}=$
8) $\left(-d^{4}\right)^{3}=$

Zero index:

Recall from GCSE that

$$
a^{0}=1 .
$$

This result is true for any non-zero number a.
Therefore $\quad 5^{0}=1 \quad\left(\frac{3}{4}\right)^{0}=1 \quad(-5.2304)^{0}=1$

Negative powers

A power of -1 corresponds to the reciprocal of a number, i.e. $a^{-1}=\frac{1}{a}$
Therefore $\quad 5^{-1}=\frac{1}{5}$

$$
0.25^{-1}=\frac{1}{0.25}=4
$$

$\left(\frac{4}{5}\right)^{-1}=\frac{5}{4} \quad$ (you find the reciprocal of a fraction by swapping the top and bottom over)

This result can be extended to more general negative powers: $a^{-n}=\frac{1}{a^{n}}$.
This means:

$$
\begin{aligned}
& 3^{-2}=\frac{1}{3^{2}}=\frac{1}{9} \\
& 2^{-4}=\frac{1}{2^{4}}=\frac{1}{16} \\
& \left(\frac{1}{4}\right)^{-2}=\left(\left(\frac{1}{4}\right)^{-1}\right)^{2}=\left(\frac{4}{1}\right)^{2}=16
\end{aligned}
$$

Fractional powers:

Fractional powers correspond to roots:

$$
a^{1 / 2}=\sqrt{a} \quad a^{1 / 3}=\sqrt[3]{a} \quad a^{1 / 4}=\sqrt[4]{a}
$$

In general:

$$
a^{1 / n}=\sqrt[n]{a}
$$

Therefore:

$$
8^{1 / 3}=\sqrt[3]{8}=2 \quad 25^{1 / 2}=\sqrt{25}=5 \quad 10000^{1 / 4}=\sqrt[4]{10000}=10
$$

A more general fractional power can be dealt with in the following way: $\quad a^{m / n}=\left(a^{1 / n}\right)^{m}$
So $\quad 4^{3 / 2}=(\sqrt{4})^{3}=2^{3}=8$

$$
\begin{aligned}
& \left(\frac{8}{27}\right)^{2 / 3}=\left(\left(\frac{8}{27}\right)^{1 / 3}\right)^{2}=\left(\frac{2}{3}\right)^{2}=\frac{4}{9} \\
& \left(\frac{25}{36}\right)^{-3 / 2}=\left(\frac{36}{25}\right)^{3 / 2}=\left(\sqrt{\frac{36}{25}}\right)^{3}=\left(\frac{6}{5}\right)^{3}=\frac{216}{125}
\end{aligned}
$$

AS Mathematics - Induction Booklet

Exercise B:

Find the value of:

1) $4^{1 / 2}$
2) $27^{1 / 3}$
3) $(1 / 9)^{1 / 2}$
4) 5^{-2}
5) 18^{0}
6) 7^{-1}
7) $27^{2 / 3}$
8) $\left(\frac{2}{3}\right)^{-2}$
9) $8^{-2 / 3}$
10) $\quad(0.04)^{1 / 2}$
11) $\left(\frac{8}{27}\right)^{2 / 3}$
12) $\left(\frac{1}{16}\right)^{-3 / 2}$

Simplify each of the following:
13) $2 a^{1 / 2} \times 3 a^{5 / 2}$
14) $x^{3} \times x^{-2}$
15) $\quad\left(x^{2} y^{4}\right)^{1 / 2}$

Surds

Expressions like $\sqrt{2}, 5 \sqrt{3}+1$ and $\frac{6 \sqrt{5}}{7}$ are all examples of surds as they are expressed in terms of a root. In general, surds are numbers that are left in a form involving a root (typically a square root).

Simplifying Surds

Some surds can be simplified. This is done by finding an equivalent expression that involves the square root of a smaller number.

The surd \sqrt{n} can be simplified if n is divisible by a square number (bigger that 1).
To simplify a surd, we use the result: $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$

Example:

Simplify $\sqrt{52}$

Solution:

As 52 is divisible by a square number (4 goes into 52), $\sqrt{52}$ can be simplified:

$$
\sqrt{52}=\sqrt{4 \times 13}=\sqrt{4} \times \sqrt{13}=2 \sqrt{13}
$$

When dividing, we sometimes make use of the result $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$.

Exercise A

Simplify

1) $\sqrt{50}$
2) $\sqrt{72}$
3) $\sqrt{27}$
4) $\sqrt{80}$
5) $\sqrt{360}$
6) $\frac{\sqrt{900}}{\sqrt{3}}$

We will need to use the following result:

$$
\sqrt{a} \times \sqrt{b}=\sqrt{a b}
$$

Example:

$$
4 \sqrt{3} \times 2 \sqrt{3}=4 \times 2 \times \sqrt{3} \times \sqrt{3}=4 \times 2 \times 3=24
$$

Note: Here we used the fact that $\sqrt{3} \times \sqrt{3}=3$ (by definition of the square root of 3). We can think of this as $\sqrt{3} \times \sqrt{3}=\sqrt{9}=3$

Example 2:

$$
6 \sqrt{2} \times 3 \sqrt{18}=6 \times 3 \times \sqrt{2} \times \sqrt{18}=18 \times \sqrt{36}=18 \times 6=108
$$

Example 3:

Expand and simplify: $\sqrt{2}(3 \sqrt{3}-2 \sqrt{2})$
Solution: Use the usual rules for expanding brackets to get:

$$
\begin{aligned}
& \sqrt{2} \times 3 \sqrt{3}-\sqrt{2} \times 2 \sqrt{2} \\
& =3 \sqrt{6}-2 \sqrt{4} \\
& =3 \sqrt{6}-2 \times 2 \\
& =3 \sqrt{6}-4
\end{aligned}
$$

Exercise B

Simplify

1) $\sqrt{3} \times \sqrt{7}$
2) $5 \sqrt{2} \times 4 \sqrt{5}$
3) $3 \sqrt{3} \times 2 \sqrt{6}$
4) $\sqrt{8} \times \sqrt{27}$
5) $\frac{5 \sqrt{20}}{6 \sqrt{5}}$
6) $\frac{8 \sqrt{18}}{4 \sqrt{2}}$
7) $(\sqrt{2}+1)(\sqrt{2}+5)$
8) $(5-\sqrt{3})(\sqrt{2}-8)$

AS Mathematics - Induction Booklet

Addition and Subtraction with Surds
You can only add or subtract with surds if the surd is the same; sometimes if they are not the same, you may be able to simplify them so that the same surd is present.

Example:

$$
2 \sqrt{3}+4 \sqrt{3}+6 \sqrt{5}=6 \sqrt{3}+6 \sqrt{5}
$$

Here add the $2 \sqrt{3}$ and $4 \sqrt{3}$ as the same surd is present but you cannot add the $6 \sqrt{5}$.

$$
\begin{aligned}
2 \sqrt{5}+\sqrt{45} & =2 \sqrt{5}+3 \sqrt{5} \\
& =5 \sqrt{5}
\end{aligned}
$$

By simplifying $\sqrt{45}$ to $3 \sqrt{5}$, you can add the two surds together.
These methods also work for subtraction of surds.

Exercise C

Simplify

1) $\sqrt{3}+\sqrt{7}$
2) $5 \sqrt{2}+4 \sqrt{2}$
3) $3 \sqrt{6}+\sqrt{24}$
4) $\sqrt{50}+\sqrt{8}$
5) $\sqrt{27}+\sqrt{75}$
6) $2 \sqrt{5}-\sqrt{5}$
7) $\sqrt{72}-\sqrt{50}$
8) $6 \sqrt{3}-\sqrt{12}+\sqrt{27}$
9) $\sqrt{200}+\sqrt{90}-\sqrt{98}$
10) $\sqrt{72}-\sqrt{75}+\sqrt{108}$

Rationalising a denominator

In mathematics, it is considered untidy to leave a surd in the denominator of a fraction.
If there is a surd in the denominator, you should try to find an equivalent answer which only has surds on the top of the fraction. This process is called rationalising the denominator.

To rationalise the denominator in $\frac{a}{\sqrt{b}}$, you multiply top and bottom by \sqrt{b} :

$$
\frac{a}{\sqrt{b}}=\frac{a}{\sqrt{b}} \times \frac{\sqrt{b}}{\sqrt{b}}=\frac{a \sqrt{b}}{b}
$$

Note: Because you multiply the top and the bottom by the same thing, you haven't changed the value of the number.

Example: Rationalise the denominator in $\frac{6}{\sqrt{2}}$.

Solution:

Multiply top and bottom by $\sqrt{2}$:

$$
\frac{6}{\sqrt{2}}=\frac{6}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{6 \sqrt{2}}{2}=3 \sqrt{2}
$$

AS Mathematics - Induction Booklet
Example: Rationalise the denominator in $\frac{8}{3 \sqrt{6}}$

Solution:

Multiply top and bottom by $\sqrt{6}$:

$$
\begin{aligned}
\frac{8}{3 \sqrt{6}} & =\frac{8}{3 \sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}=\frac{8 \sqrt{6}}{3 \times 6} \\
& =\frac{8 \sqrt{6}}{18} \\
& =\frac{4 \sqrt{6}}{9} \quad \quad \text { (dividing top and bottom by } 2 \text {) }
\end{aligned}
$$

Exercise D

Simplify

1) $\frac{1}{\sqrt{2}}$
2) $\frac{3}{\sqrt{5}}$
3) $\frac{10}{\sqrt{5}}$
4) $\frac{5}{2 \sqrt{7}}$
5) $\frac{\sqrt{3}}{\sqrt{2}}$
6) $\frac{10}{\sqrt{10}}$
7) $\frac{4+\sqrt{7}}{\sqrt{3}}$
8) $\frac{6+8 \sqrt{5}}{\sqrt{2}}$
9) $\frac{6-\sqrt{5}}{\sqrt{5}}$

SOLUTIONS TO THE EXERCISES

CHAPTER 1:

Ex A

1) $28 x+35$
2) $-15 x+21$
3) $-7 a+4$
4) $6 y+3 y^{2}$
5) $2 x-4$
6) $7 x-1$
7) $x^{2}+5 x+6$
8) $t^{2}-3 t-10$
9) $6 x^{2}+x y-12 y^{2}$
10) $4 x^{2}+4 x-24$
11) $4 y^{2}-1$
12) $12+17 x-5 x^{2}$
ExB
13) $x^{2}-2 x+1$
14) $9 x^{2}+30 x+25$
15) $49 x^{2}-28 x+4$
16) $x^{2}-4$
17) $9 x^{2}-1$
18) $25 y^{2}-9$

CHAPTER 2

ExA

1) 7
2) 3
3) $11 / 2$
4) 2
5) $-3 / 5$
6) $-7 / 3$

Ex B

1) 2.4
2) 5
3) 1
4) $1 / 2$

Ex C

1) 7
2) 15
3) $24 / 7$
4) $35 / 3$
5) 3
6) 2
7) $9 / 5$
8) 5
Ex D
9) $34,36,38$
10) $9.875,29.625$
11) 24,48

CHAPTER 3

1) $x=1, y=3$
2) $x=-3, y=1$ 3) $x=0, y=-2$
3) $x=3, y=1$
4) $a=7, b=-26) p=11 / 3, q=4 / 3$

CHAPTER 4

Ex A

1) $x(3+y)$
2) $2 x(2 x-y)$
3) $p q(q-p)$
4) $3 q(p-3 q)$
5) $2 x^{2}(x-3)$
6) $4 a^{3} b^{2}\left(2 a^{2}-3 b^{2}\right)$
7) $(y-1)(5 y+3)$

Ex B

1) $(x-3)(x+2)$
2) $(x+8)(x-2)$
3) $(2 x+1)(x+2)$
4) $x(2 x-3) \quad$ 5) $(3 x-1)(x+2)$
5) $(2 y+3)(y+7)$
6) $(7 y-3)(y-1)$
7) $5(2 x-3)(x+2)$
8) $(2 x+5)(2 x-5) \quad 10)(x-3)(x-y)$
9) $4(x-2)(x-1)$
10) $(4 m-9 n)(4 m+9 n)$
11) $y(2 y-3 a)(2 y+3 a)$
12) $2(4 x+5)(x-4)$

CHAPTER 5

ExA

1) $x=\frac{y+1}{7}$
2) $x=4 y-5$
3) $x=3(4 y+2)$
4) $x=\frac{9 y+20}{12}$

Ex B

1) $t=\frac{32 r P}{w}$
2) $t= \pm \sqrt{\frac{32 r P}{w}}$
3) $t= \pm \sqrt{\frac{3 V}{\pi h}}$
4) $t=\frac{P^{2} g}{2}$
5) $t=v-\frac{P a g}{w}$
6) $t= \pm \sqrt{\frac{r-a}{b}}$

Ex C

1) $x=\frac{c-3}{a-b}$
2) $x=\frac{3 a+2 k}{k-3}$
3) $x=\frac{2 y+3}{5 y-2}$
4) $x=\frac{a b}{b-a}$

CHAPTER 6

1) a) $-1,-2$
b) $-1,4$
c) $-5,3$
2) a) $0,-3$
b) 0,4
c) $2,-2$
3) a) $-1 / 2,4 / 3$
b) $0.5,2.5$
4) a) $-5.30,-1.70$
b) $1.07,-0.699$
c) $-1.20,1.45$
d) no solutions
e) no solutions f) no solutions

AS Mathematics - Induction Booklet

CHAPTER 7

Ex A

1) $5 b^{6}$
2) $6 c^{7}$
3) $b^{3} c^{4}$
4) $-12 n^{8}$ 5) $4 n^{5}$
5) d^{2}
6) a^{6}
7) $-d^{12}$ Ex B
8) 2 2) 3
9) $1 / 3$
10) $1 / 25$ 5) 1
11) $1 / 7$
12) 9
13) $9 / 4$
14) $1 / 4$
15) 0.2
16) $4 / 9$
17) 64
18) $6 a^{3}$ 14) x 15) $x y^{2}$

CHAPTER 8

ExA

1) $5 \sqrt{2}$
2) $6 \sqrt{2}$
3) $3 \sqrt{3}$
4) $4 \sqrt{5}$
5) $6 \sqrt{10}$
6) $10 \sqrt{3}$

Ex B

1) $\sqrt{21}$
2) $20 \sqrt{10}$
3) $18 \sqrt{2}$
4) $6 \sqrt{6}$
5) $\frac{5}{3}$
6) 6
7) $7+6 \sqrt{2}$
8) $5 \sqrt{2}-40-\sqrt{6}+8 \sqrt{3}$

ExC

1) $\sqrt{3}+\sqrt{7}$
2) $9 \sqrt{2}$
3) $5 \sqrt{6}$
4) $7 \sqrt{2}$
5) $8 \sqrt{3}$
6) $\sqrt{5}$
7) $\sqrt{2}$
8) $7 \sqrt{3}$
9) $3 \sqrt{2}+3 \sqrt{10}$
10) $6 \sqrt{2}+\sqrt{3}$

ExD

1) $\frac{\sqrt{2}}{2}$
2) $\frac{3 \sqrt{5}}{5}$
3) $2 \sqrt{5}$
4) $\frac{5 \sqrt{7}}{14}$
5) $\frac{\sqrt{6}}{2}$
6) $\sqrt{10}$
7) $\frac{4 \sqrt{3}+\sqrt{21}}{3}$
8) $3 \sqrt{2}+4 \sqrt{5}$
9) $\frac{6 \sqrt{5}-5}{5}$
