

0.1 Basic chemistry competencies

0.1.1. Balancing equations

Accept multiples or appropriate fractions, 1 mark each.

1. <u>2</u> C +O ₂	→ <u>2</u> CO
2. 2Ba +2H ₂ O	<u>2</u> Ba(OH) ₂ +H ₂
3. $C_2H_6 + 3.5O_2$	$\longrightarrow \underline{2}CO_2 + \underline{3}H_2O$
4. <u>2</u> HCl +Mg(OH) ₂	→MgCl ₂ + <u>2</u> H ₂ O
5. N ₂ +O ₂	<u>2</u> NO
6. <u>2</u> Fe ₂ O ₃ + <u>3</u> C	→ <u>4</u> Fe + <u>3</u> CO ₂
7. CH ₃ CH ₂ OH + <u>2[</u> O]	►CH ₃ COOH +H ₂ O
8. <u>2</u> HNO ₃ +CuO	
9. Al ³⁺ + <u>3</u> e [−]	→AI
10. $\underline{2}$ Fe(H ₂ O) ₆ ³⁺ + $\underline{3}$ CO ₃ ²⁻	$\longrightarrow \underline{2} Fe(OH)_3(H_2O)_3 + \underline{3}CO_2 + \underline{3}H_2O$

0.1.2. Constructing ionic formulae

1.

a. $Mg^{2+}O^{2-} = MgO$	(1 mark)
b. $Na^+ SO_4^{2-} = Na_2 SO_4$	(1 mark)
c. $Ca^{2+}OH^{-} = Ca(OH)_{2}$	(1 mark)
d. $AI^{3+} O^{2-} = AI_2O_3$	(1 mark)
e. $Cu^+ O^{2-} = Cu_2 O$	(1 mark)

2.	
a. SO ₄ ²⁻	(1 mark)
b. NO ₃ ⁻	(1 mark)
c. PO ₄ ³⁻	(1 mark)
d. HCOO⁻	(1 mark)
e. CO ₃ ²⁻	(1 mark)

0.1.3. Writing equations from text

1 mark each, accept multiples for all except question 9.

1. 3Si + 2N ₂		Si ₃ N ₄
2. H ₂ SO ₄ + 2NaOH		$Na_2SO_4 + 2H_2O$
3. B + 1.5Cl ₂		BCI ₃
4. $N_2 + O_2$		2NO
5. $C_2H_5OH + 3O_2$		2CO ₂ + 3H ₂ O
6. $SiO_2 + C + 2CI_2$		$SiCl_4 + CO_2$
7. Fe ₂ O ₃ + 3CO	>	2Fe + 3CO ₂
8. CH ₄ + 2O ₂	>	CO ₂ + 2H ₂ O
9. $0.5Cl_2 + 1.5F_2$		CIF ₃
10. $2NO_2 + H_2O + 0.5O_2$		2HNO₃

0.2 Basic mathematical competencies

0.2.1. Rearranging equations

1.		
a.	$c = \frac{1000n}{v}$	(1 mark)
b.	$v = \frac{1000n}{c}$	(1 mark)

2.

2

a.
$$m = d \times v$$
 (1 mark)
b. $d = \frac{m \times 10^{-3}}{v \times 10^{-6}} = \frac{m}{v \times 10^{-3}}$

1 mark for both parts of the fraction correct, 1 mark for cancelling down the $\times 10^{-6}$ to $\times 10^{-3}$. (2 marks)

a.
$$p = \frac{h}{\lambda}$$
 (1 mark)

b.
$$v = \frac{h}{\lambda m}$$

1 mark for substitution of p = mv into the first equation and 1 mark for successful rearrangement.

(2 marks)

4.

$$v = \sqrt{\frac{KE}{0.5m}}$$
 or $v = \sqrt{\frac{2KE}{m}}$

1 mark for first rearrangement moving 0.5 m underneath the KE, 1 mark for dealing with the v^2 by addition of the square root. (2 marks)

0.2.2. BODMAS

1. a. 28

b. 40

- c. 8
- d. 45
- e. 6
- f. 40

2.	a.	180	(1 mark)
	b.	5352	(1 mark)
	c.	180	(1 mark)
Eva	luatio	on: Pressing equals after each operation leads to BODMAS errors.	(1 mark)

0.2.3. Quantity calculus

1.	g cm ⁻³	(1 mark)
2.	mol dm ⁻³	(1 mark)
3.	g cm ⁻³	(1 mark)
4.	mol dm ⁻³ s ⁻¹	(1 mark)
5.	N m ⁻²	(1 mark)
6.	a. $mol^2 dm^{-6}$	(1 mark)
	b. $mol^{-1} dm^3 s^{-1}$	(1 mark)
	c. kPa ^{-0.5}	(1 mark)
	d. $mol^2 dm^{-6}$	(1 mark)
	e. mol dm ^{-3}	(1 mark)

0.2.4. Expressing large and small numbers

1.	a.	1.06×10^{6}	(1 mark)
	b.	1.06 × 10 ⁻³	(1 mark)
	c.	2.222×10^2	(1 mark)

1 mark for sensible choice of x 10^x power, in this case x 10⁻² or x 10⁻³ is most sensible. 0.5 marks for each number correctly converted.

3.	a.	104	(1 mark)
	b.	10 ¹⁴	(1 mark)
	c.	0.5×10^{-11} or 5×10^{-12}	(1 mark)
	d.	2.4 × 10 ²	(1 mark)

0.2.5. Significant figures, decimal places and rounding

		Significant figures	Decimal places
1	3.131 88	6	5
2	1000	1	0
3	0.000 65	2	5
4	1006	4	0
5	560.0	4	1
6	0.000 480	3	6

(0.5 mark for each correct answer)

(1 mark) (1 mark) (1 mark) (1 mark)

- **7.** a. i. 0.0758 ii. 0.08
 - b. i. 231
 - ii. 231.46

0.2.6. Unit conversions 1 - Length, mass and time

1.	12 mm	(1 mark)
2.	72.00 m	(1 mark)
3.	270 s	(1 mark)
4.	154 s	(1 mark)
5.	2 h 25 min	(1 mark)
6.	15.5 t	(1 mark)
7.	26.5 g	(1 mark)
8.	75 mg/tablet = 0.075 g/tablet 1 g \div 0.075 g/tablet = 13.3 tablets Minimum number of tablets needed = <u>14</u>	(1 mark)
9.	30 g/min	(1 mark)

NOTE In this example, as you are converting 1/the unit, you need to do the inverse of what is described in the diagram eg instead of \div 60, \times 60.

(1 mark)

10. 10.44 kg/h = 10 440 g/h = 174 g/min = <u>2.9 g/s</u>

0.2.7. Unit conversions 2 – Volume

1.	drir	nks bottle, 1 dm³; sugar cube, 1 cm³; washing machine, 1 m³	(1 mark)
2.	То	convert a volume in cm ³ into a volume in dm ³ , divide by 1000.	(½ mark)
	То	convert a volume in cm ³ into a volume in m ³ , divide by 1 000 000.	(½ mark)
3.	a.	1.6 dm ³	(1 mark)
	b.	5.5 × 10 ⁻⁴ m ³	(1 mark)
	c.	1350 cm ³	(1 mark)
	d.	375 000 000 cm ³	(1 mark)
	e.	0.006 54 m ³	(1 mark)
4.			

	£ per m ³		p per cm ³		p per dm ³
Cylinder 'a'	7.27	or	7.27 × 10 ⁻⁴	or	0.727
Cylinder 'b'	7.87		7.87 × 10 ⁻⁴		0.787
Cylinder 'c'	4.11		4.11 × 10 ⁻⁴		0.411

Therefore 'c' is the best value for money.

0.2.8. Moles and mass

1.	a.	$32.0 \text{ g} \div 16.0 \text{ g mol}^{-1} = 2 \text{ mol}$	(1 mark)
	b.	175 g ÷ 100.1 g mol ⁻¹ = 1.75 mol	(1 mark)
	C.	$0.2 \text{ g} \div 180.0 \text{ g mol}^{-1} = 0.0011 \text{ mol}$	(1 mark)
2.	а	20 mol × 180 g mol ⁻¹ = 3 600 g	(1 mark)
	b	$5.00 \times 10^{-3} \text{ mol} \times 63.5 \text{ g mol}^{-1} = 0.318 \text{ g}$	(1 mark)
	С	42.0 mol × 249.6 g mol ⁻¹ = 10 500 g	(1 mark)
3.	a.	i. $3.09 \text{ g} \div 0.0250 \text{ mol} = 123.6 \text{ g mol}^{-1}$	(1 mark)
		ii. CuCO ₃	(1 mark)
	b.	molar mass of chromium carbonate = $4.26 \text{ g} \div 0.015 \text{ mol} = 284 \text{ g mol}^{-1}$	(1 mark)
		Cr ₂ (CO ₃)	(1 mark)

BONUS QUESTION

 $6.02 \times 10^{23} \text{ p} \div 7500\ 000\ 000\ \text{people} = 8.03 \times 10^{13} \text{ p}$ per person or 803 000 million pounds per person!

0.2.9. Moles and concentration

1.	a.	$1.5 \text{ mol} \div 0.25 \text{ dm}^3 = 6.0 \text{ mol} \text{ dm}^{-3}$	(1 mark)
	b.	$0.25 \text{ dm}^3 \times 0.0150 \text{ mol dm}^{-3} = 3.75 \times 10^{-3} \text{ mol}$	(1 mark)
	C.	$0.125 \text{ mol} \div 0.85 \text{ mol} \text{ dm}^{-3} = 0.15 \text{ dm}^3$	(1 mark)
2.	a.	5.0 g ÷ 84.0 g mol ^{−1} = <u>0.0595 mol</u>	(1 mark)
		$0.0595 \text{ mol} \div 0.100 \text{ dm}^3 = 0.60 \text{ mol dm}^{-3}$	(1 mark)
	b.	$0.025 \text{ dm}^3 \times 3.8 \text{ mol dm}^{-3} = 0.095 \text{ mol}$	(1 mark)
		0.095 mol × 40.0 g mol⁻¹ = <u>3.8 g</u>	(1 mark)
	c.	2.5 g ÷ 129.9 g mol ⁻¹ = <u>0.0192 mol</u>	(1 mark)
		0.0192 mol ÷ 1.3 mol dm ⁻³ = <u>0.015 dm³</u>	(1 mark)
		0.0148 dm ³ = <u>15 cm³</u> (to 2 sig. fig.)	(1 mark)

0.3 Basic practical competencies

0.3.1. Laboratory equipment

- 1. For each part (a)–(e) give ½ mark for the correct name and ½ mark for one or more correct possible volumes depending on what is available in your laboratory.
 - a. conical flask
 100 cm³ / 250 cm³
 - b. beaker
 100 cm³ / 250 cm³
 - volumetric flask
 100 cm³ / 200 cm³ / 250 cm³
 - d. test tube or boiling tube 10 cm^3 or 25 cm^3
 - e. burette 50 cm³

2.

f. pipette various sizes although 20 cm³ or 25 cm³ are the most common at school level

a.	(gas) syringe	(1 mark)
b.	evaporating basin	(1 mark)
C.	crucible	(1 mark)
d.	pestle and mortar (the mortar is the bowl)	(1 mark)

0.3.2. Recording results

1. Improvements:

(1 mark for each improvement identified)

- Units for temperature should be included in the table headings.
- All results should be recorded to the same number of decimal places (the resolution of the thermometer used), in this case 1 d.p.
- The temperature changes are negative and so should be recorded as such, eg –22.1, or the heading should be changed to 'Temperature decrease' or similar.
- The temperature change for Run 3 is anomalous and so should be circled, or similar, to show this. It is correctly not included in the calculation of the mean.
- The mean temperature change should be stated to the same number of significant figures as the values from which it is calculated.

2. Experiment 1:

(2 marks)

	Mass / g
Crucible empty	
Crucible + magnesium ribbon	
Crucible + magnesium oxide	

1 mark – Units given in table heading
1 mark – Clear description of item of which the mass is being recorded
Use teacher discretion to award marks for other suitable tables

Experiment 2:

(3 marks)

	Volume of hydrogen gas produced / cm ³							
Time / s	0.5 mol dm ^{⊣3} HCl(aq)	1.0 mol dm ^{⊣3} HCl(aq)	1.5 mol dm ^{⊣3} HCl(aq)					
0								
20								
40								
60								
80								
100								
120								
140								
160								
180								

1 mark - Columns clearly labelled with units

1 mark – Dependent variable (volume of hydrogen gas) across columns Independent variable (time) down rows

1 mark – Time starts at 0 and is in seconds throughout table (ie not 1 min 20 s)

0.3.3. Drawing scatter graphs

- 1. Graph plotted with marks allocated as follows: (1 mark) Temperature on the *x*-axis, volume on the *y*-axis. • Suitable scales are chosen so that the plotted points cover more than half the graph paper (ie axes • do not start at 0). (1 mark) Axes labelled with value and unit. (1 mark) . Points are plotted accurately with a neat pencil cross and within ± 1 square. • All points plotted accurately 3 marks 4 points plotted accurately 2 marks 3 points plotted accurately 1 mark 2. Error bars are added to each plotted point (except 80 °C, 51.0 cm³) (1 mark) Anomalous values circled in table not included in error bars (1 mark)
- Suitable line of best fit drawn
- As the temperature increases the volume of the gas increases (or suitable similar <u>comparative</u> statement) (1 mark)

(1 mark)

