GCE

Chemistry

Student workbook

Edexcel Advanced Subsidiary GCE in Chemistry (8CH01)

Edexcel Advanced GCE in Chemistry (9CH01)

Moles, Formulae and Equations
October 2007

Edexcel, a Pearson company, is the UK's largest awarding body offering academic and vocational qualifications and testing to more than 25,000 schools, colleges, employers and other places of learning here and in over 100 countries worldwide. Our qualifications include GCSE, AS and A Level, GNVQ, NVQ and the BTEC suite of vocational qualifications from entry level to BTEC Higher National Diplomas and Foundation Degrees.
We deliver 9.4 million exam scripts each year, with over 3.8 million marked onscreen in 2006. As part of Pearson, Edexcel has been able to invest in cutting-edge technology that has revolutionised the examinations system, this includes the ability to provide detailed performance data to teachers.

References to third party material made in this specification are made in good faith. Edexcel does not endorse, approve or accept responsibility for the content of materials, which may be subject to change, or any opinions expressed therein. (Material may include textbooks, journals, magazines and other publications and websites.)

Authorised by Roger Beard
Prepared by Sarah Harrison

All the material in this publication is copyright
© Edexcel Limited 2007

Contents

Introduction 1
Section 1: Atoms 2
Exercise 1: Calculation of the Molar Mass of compounds 5
Section 2: Chemical formulae 8
Exercise 2: Writing formulae from names 12
Section 3: Naming of compounds 17
Exercise 3: Names from formulae 21
Section 4: The mole 24
Exercise 4a: Calculation of the number of moles of material in a given mass of that material 29
Exercise 4b: Calculation of the mass of material in a given number of moles of at material 32
Exercise 4c: Calculation of the volume of a given number of moles of a gas 35
Exercise 4d: Calculation of the number of moles of gas in a given volume of that gas 37
Exercise 4 e : Calculation of the volume of a given mass of gas 39
Exercise 4 f : Calculation of the mass of a given volume of gas 41
Exercise 4 g : Calculation of the Relative Molecular Mass of a gas from mass and volume data for the gas 43
Section 5: Using the idea of moles to find formulae 45
Exercise 5: Calculation of formulae from experimental data 51
Section 6: Chemical equations 55
Exercise 6a: Balancing equations 57
Exercise 6b: What's wrong here? 60
Exercise 6c: Writing equations in symbols from equations in words 61
Section 7: How equations are found by experiment 63
Exercise 7: Writing chemical equations from experimental data 66
Section 8: Amounts of substances 68
Exercise 8: Calculations of products/reactants based on equations 71
Section 9: Reactions involving gases 74
Exercise 9: Calculations based on equations involving only gases 76
Section 10: lons and ionic equations 78
Exercise 10: Ionic equations 80
Section 11: Calculations involving chemicals in solution 82
Exercise 11a: Calculations based on concentrations in solution 84
Exercise 11b: Simple volumetric calculations 87
Section 12: The periodic table of the elements 90
Section 13: Answers 91

Introduction

This workbook, developed from an earlier version, offers support to students in transition from GCSE Additional Science or GCSE Chemistry and the Advanced Subsidiary GCE.
The workbook aims to help students practise their skills in the areas of formulae, equations and simple mole equations. It gives examples for them to work through to help build their confidence. Some sections involve multi-step calculations.

Edexcel acknowledges the help and support received from teachers in producing this updated edition, which replaces the previous versions issued in January 1998, August 2000 and October 2004.

Section 1: Atoms

All matter is made of particles. At one time, it was thought that the tiniest particle was the atom, which comes from the Greek word meaning 'indivisible'.

We now know that atoms can be split and that there are particles smaller than atoms, subatomic particles, electrons, protons and neutrons. You will need to know about these particles, which make up the different kinds of atoms.

However, you must understand that chemistry is all about rearrangements of atoms that do not themselves change.

Atoms are very small. The hydrogen atom, the smallest and lightest of all atoms, has a diameter of about $10^{8} \mathrm{~mm} .1 \mathrm{~g}$ of hydrogen atoms contains about 6×10^{23} atoms. It is very difficult to 'see' an individual atom and find its mass.
An atom is the smallest, electrically neutral, particle of an element that can take part in a chemical change.
A molecule is the smallest, electrically neutral, particle of an element or compound that can exist on its own.

An ion is an atom, or group of atoms, which carries an electric charge.
You need to know these definitions by heart, but you also need to be able to recognise the formulae of atoms and molecules. $\mathrm{Li}, \mathrm{O}, \mathrm{Cl}, \mathrm{C}$ are all formulae which represent atoms. Some but not all of these can exist on their own. Oxygen, for example, unless combined with something else always exists as oxygen molecules, O_{2}, which contain two atoms. Water contains only one atom of oxygen but here it is combined with two hydrogen atoms.
Make sure that you really understand these ideas:

- a single oxygen atom, 0 , cannot exist on its own
- a single oxygen atom can exist when combined with something else, but then it is part of a molecule
- an oxygen molecule has two oxygen atoms, O_{2}
- a few elements exist as single atoms: for these elements, an atom is the same as a molecule.

Structure of the atom

The atom is composed of electrons, neutrons and protons. You will need to remember the relative mass of, and the electric charge on, each.

Particle	Relative mass (Carbon -12 scale)	Relative charge (on scale electron charge $=-1$ unit)
Proton	1	+1
Electron	$1 / 1840$	-1
Neutron	1	0

The atom is mostly empty space. It has a solid core or nucleus, the centre that contains the protons and neutrons. The electrons circulate round the nucleus in specific orbits or shells.
We can picture the hydrogen atom - the simplest of all atoms with one electron and one proton in the nucleus - by considering a pea placed in the centre of a football pitch, to represent the nucleus with its proton. On this scale the electron will revolve in a circular orbit round the goalposts. Between the electron and the nucleus is empty space.

Atoms are the particles whose symbols are found in the periodic table of elements given in all your examination papers and also in Section 12 of this workbook. You can see that there are only about 100 of them. The middle part of the atom, the nucleus, contains one or more protons. It is the number of protons that make the atom what it is. An atom with one proton is always a hydrogen atom; one with two protons a helium atom and so on.
There are more substances than the 100 or so different kinds of atom. These other substances are made by combining atoms (in various ways) to make molecules.
When a chemical reaction takes place the atoms are rearranged to create different molecules but no atoms can be made or destroyed. To show this you have to find a method of counting the atoms that are part of a chemical reaction and its products.
The mass of an individual atom is very small and it is more convenient to measure atomic masses as relative masses.

The definition of Relative Atomic Mass A_{r} as follows.
The mass of a single atom on a scale on which the mass of an atom of carbon-12 has a mass of 12 atomic mass units. The relative atomic mass does not have units.
The definition of Relative Molecular Mass M_{r} (also referred to as molar mass) is:
The mass of a single molecule on a scale on which the mass of an atom of carbon-12 has a mass of 12 atomic mass units.

The relative molecular mass of a molecule is calculated by adding together the relative atomic masses of the atoms in the chemical formulae.

Definition of Relative Formula Mass: In many ways this is more accurate than Relative Molecular Mass. Many salts, even in the solid state, exist as ions rather than molecules. Although the formula of sodium chloride is normally given as NaCl , it is not a simple molecule but a giant lattice and it is more accurately written as $\left(\mathrm{Na}^{+} \mathrm{Cl}^{-}\right)_{n}$. Since this compound does not have molecules, it cannot have relative 'molecular' mass. However, the principle is the same: add the relative atomic masses of sodium (23) and chlorine (35.5) to give 58.5, the relative formula mass of NaCl .
Remember: that relative atomic mass, molecular mass and formula mass have no units.

Examples: Calculation of Molar Mass from relative atomic mass data
Before you start these questions make sure you read Section 4: The mole of this workbook.
When you carry out experiments you will weigh chemicals in grams. Molar Mass has the same numerical value as Relative Molecular Mass. It is calculated by adding together the relative atomic masses of the elements in the molecule. The total is expressed in units of grams per mol or $\mathrm{g} \mathrm{mol}^{-1}$.

Example 1

Calculate the Molar Mass of sulfuric acid $\mathrm{H}_{2} \mathrm{SO}_{4}$
This molecule contains

2 atoms of hydrogen each of mass 1	$=2 \times 1$	$=2 \mathrm{~g} \mathrm{~mol}^{-1}$
1 atom of sulfur of mass 32.1	$=1 \times 32.1$	$=32.1 \mathrm{~g} \mathrm{~mol}^{-1}$
4 atoms of oxygen of mass 16	$=4 \times 16$	$=64 \mathrm{~g} \mathrm{~mol}^{-1}$
	Total mass	$=98.1 \mathrm{~g} \mathrm{~mol}^{-1}$

Example 2

Calculate the Molar Mass of lead nitrate $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
Care! This molecule contains TWO nitrate groups.

1 atom of head of mass 207.2	$=1 \times 207.2$	$=207.2 \mathrm{~g} \mathrm{~mol}^{-1}$
2 atoms of nitrogen of mass 14	$=2 \times 14$	$=28 \mathrm{~g} \mathrm{~mol}^{-1}$
6 atoms of oxygen of mass 16	$=6 \times 16$	$=96 \mathrm{~g} \mathrm{~mol}^{-1}$
	Total mass	$=331.2 \mathrm{~g} \mathrm{~mol}^{-1}$

Example 3

Calculate the Molar Mass of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
Care! This molecule has 5 molecules of water attached to each molecule of copper sulfate. Many students make the mistake of thinking that there are 10 hydrogens and only 1 oxygen.

In CuSO_{4}	1 atom of copper of mass 63.5	$=1 \times 63.5$	$=63.5 \mathrm{~g} \mathrm{~mol}^{-1}$
	1 atom of sulfur of mass 32.1	$=1 \times 32.1$	$=32.1 \mathrm{~g} \mathrm{~mol}^{-1}$
	4 atoms of oxygen each of mass 16	$=4 \times 16$	$=64 \mathrm{~g} \mathrm{~mol}^{-1}$
In 5 $\mathrm{H}_{2} \mathrm{O}$	5×2 atoms of hydrogen each of mass 1	$=10 \times 1$	$=10 \mathrm{~g} \mathrm{~mol}^{-1}$
	5×1 atoms of oxygen each of mass 16	$=5 \times 16$	$=80 \mathrm{~g} \mathrm{~mol}^{-1}$
		Total mass	$=249.6 \mathrm{~g} \mathrm{~mol}^{-1}$

Calculations of this type are generally written as follows
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=[63.5+32.1+(4 \times 16)+5\{(2 \times 1)+16\}]=249.6 \mathrm{~g} \mathrm{~mol}^{-1}$

Exercise 1: Calculation of the Molar Mass of compounds

Calculate the Molar Mass of the following compounds. You will find data concerning relative atomic masses on the periodic table of elements (in Section 12). When you have finished this set of calculations keep the answers for reference. You will find them useful for some of the other questions in this workbook.

1	$\mathrm{H}_{2} \mathrm{O}$
2	CO_{2}
3	NH_{3}
4	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
5	$\mathrm{C}_{2} \mathrm{H}_{4}$
6	SO_{2}
7	SO_{3}
8	HBr
9	$\mathrm{H}_{2} \mathrm{SO}_{4}$
10	HNO_{3}
11	NaCl
12	NaNO_{3}
13	$\mathrm{Na}_{2} \mathrm{CO}_{3}$
14	NaOH
15	$\mathrm{Na}_{2} \mathrm{SO}_{4}$
16	KMnO_{4}
17	$\mathrm{K}_{2} \mathrm{CrO}_{4}$
18	KHCO_{3}
19	KI
20	CsNO_{3}
21	CaCl_{2}
22	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
23	$\mathrm{Ca}(\mathrm{OH})_{2}$

24	CaSO_{4}
25	BaCl_{2}
26	AlCl_{3}
27	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
28	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
29	FeSO_{4}
30	FeCl_{2}
31	FeCl_{3}
32	$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
33	PbO
34	PbO_{2}
35	$\mathrm{Pb}_{3} \mathrm{O}_{4}$
36	$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
37	PbCl_{2}
38	PbSO_{4}
39	CuCl
40	CuCl_{2}
41	CuSO_{4}
42	ZnCl_{2}
43	AgNO_{3}
44	$\mathrm{NH}_{4} \mathrm{Cl}$
45	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
46	$\mathrm{NH}_{4} \mathrm{VO}_{3}$
47	KClO_{3}
48	KIO_{3}

49	NaClO
50	NaNO_{2}
51	$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
52	$\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
53	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$
54	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
55	$\left(\mathrm{COOH}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.$
56	$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
57	$\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
58	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
59	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$
60	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$

Section 2: Chemical formulae

A chemical formula is a useful shorthand method for describing the atoms in a chemical. Sometimes you will see the formula used instead of the name, but you should not do this if you are asked for a name.
The chemical formula of an element or compound tells you:

- which elements it contain, eg FeSO_{4} contains iron, sulfur and oxygen
- how many atoms of each kind are in each molecule, eg $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains two atoms of hydrogen, one atom of sulfur and four atoms of oxygen in each molecule
- how the atoms are arranged, eg $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ contains a group of atoms known as the ethyl group $-\mathrm{C}_{2} \mathrm{H}_{5}$, and a hydroxyl group - OH
- the masses of the various elements in a compound, eg 18 g of water, $\mathrm{H}_{2} \mathrm{O}$, contains 2 g of hydrogen atoms and 16 g of oxygen since the relative atomic mass of hydrogen is 1 (x 2 because there two hydrogen atoms) and that of oxygen is 16.
You should not learn a large number of chemical formulae by heart. However, it is useful to know a few of them and then be able to work out the rest.

You can work out the formulae of compounds containing metals from the charges on the ions.

- Metals in group 1 always have charge +1 in their compounds.
- Metals in group 2 always have charge +2 in their compounds.
- Metals in group 3 always have charge +3 in their compounds.
- Ions of group 7 elements have charge -1 .
- lons of group 6 elements have charge -2 .
- lons of group 5 elements have charge -3 .

In the compound, the number of positive and negative charges is equal so that the overall charge is zero.

Some metals form more than one ion, and this is shown by a roman numeral in the name. Iron(II) chloride contains Fe^{2+} ions so the compound is FeCl_{2}. Iron(iii) chloride contains Fe^{3+} ions so the compound is FeCl_{3}.

Some ions have formulae which you cannot deduce from the periodic table, and you will need to learn these:

- OH^{-}hydroxide
- $\mathrm{NO}_{3}{ }^{-}$nitrate
- $\mathrm{CO}_{3}{ }^{2-}$ carbonate
- $\mathrm{SO}_{4}{ }^{2-}$ sulfate
- NH_{4}^{+}ammonium.

Compounds which do not contain metals have covalent bonds. The number of bonds a nonmetal can form depends on the number of electrons in its outer shell.

As a rule:

- carbon forms 4 bonds
- nitrogen forms 3 bonds
- phosphorus can form 3 or 5 bonds
- oxygen and sulfur form 2 bonds
- halogens form 1 bond.

Here are a few examples.

- Sodium sulfate

The formula of a sodium ion is Na^{+}
The formula of a sulfate ion is $\mathrm{SO}_{4}{ }^{2-}$
There must be two sodium ions, each with charge $1+$, to balance the two - charges on sulfate.
The formula with two Na^{+}and one $\mathrm{SO}_{4}{ }^{2-}$ is written $\mathrm{Na}_{2} \mathrm{SO}_{4}$

- Calcium hydrogen carbonate

The formula of a calcium ion is Ca^{2+}
The formula of a hydrogen carbonate ion is HCO_{3}^{-}
There must be two hydrogen carbonate ions, each with charge 1-, to balance the two + charges on calcium.
The formula with one Ca^{2+} and two $\mathrm{HCO}_{3}{ }^{-}$is written $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$

Note: A bracket must be placed around a group or ion if it is multiplied by 2 or more and/or composed of more than one element. For example,
MgBr_{2} no bracket required
$\mathrm{Ca}(\mathrm{OH})_{2}$ bracket essential as CaOH_{2} is incorrect.

- Often you can cancel the numbers on the two formulae, eg:
$\mathrm{Ca}_{2}\left(\mathrm{CO}_{3}\right)_{2}=\mathrm{CaCO}_{3}$
However, you should not do this for organic compounds. For example, $\mathrm{C}_{2} \mathrm{H}_{4}$ has 2 atoms of carbon and four of hydrogen so it cannot be cancelled down to CH_{2}.
- Copper(I) oxide means use copper with charge 1 , ie $\mathrm{Cu}_{2} \mathrm{O}$. Lead(II) nitrate means use lead with charge 2 , ie $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$.
The periodic table can help you find the charge on an element and the number of bonds it can make, and hence the formula of its compounds.
Although you can use the table to work out the formulae of many compounds it is important to realise that all formulae were originally found through experimentation.
On the next page you will find a table of the more common elements and ions that you may have met at GCSE level. Also included are some that you will meet in the first few weeks of your Advanced Level course or that are mentioned in some of the calculations in this workbook. These are in italics.

Symbols and charges of common elements and ions

Elements	Symbol	Charge on ion	Ions	Symbol	Charge on ion
Aluminium	Al	+3	Ammonium	NH_{4}	+1
Barium	Ba	+2	Carbonate	CO_{3}	-2
Bromine	Br	-1	Hydrogencarbonate	HCO_{3}	-1
Calcium	Ca	+2	Hydrogen-sulfate	HSO_{3}	-1
Chlorine	Cl	-1	Hydroxide	OH	-1
Cobalt	Co	+2	Nitrate	NO_{3}	-1
Copper	Cu	+1 and 2	Nitrite	NO_{2}	-1
Hydrogen	H	+1	Sulfate	SO_{4}	-2
lodine	1	-1	Sulfite	SO_{3}	-2
Iron	Fe	+2 and 3	Chlorate(I)	CIO	-1
Lead	Pb	+2 and 4	Chlorate(V)	ClO_{3}	-1
Magnesium	Mg	+2	Vanadate(V)	VO_{3}	-1
Manganese	Mn	+2 and 4	Manganate(VII)	MnO_{4}	-1
Mercury	Hg	+1 and 2	Chromate(VI)	CrO_{4}	-2
Nitrogen	N	3 and 5	Dichromate(VI)	$\mathrm{Cr}_{2} \mathrm{O}_{7}$	-2
Oxygen	0	-2			
Potassium	K	+1			
Silver	Ag	+1			
Sodium	Na	+1			

The number of covalent bonds normally formed by an element

Element	Number of bonds
Hydrogen	1
Halogens (F, Cl, Br, I)	1
Oxygen	2
Sulfur	2 or more
Nitrogen	3
Phosphorus	3 or 5
Carbon	4
Silicon	4

Exercise 2: Writing formulae from names

Use the data in the table Symbols and charges of common elements and ions to write the formulae of the following. Before you start this exercise, make sure you have read Section 3: Naming of compounds.

1 Sodium chloride

2 Sodium hydroxide

3 Sodium carbonate

4 Sodium sulfate

5 Sodium phosphate

6 Potassium chloride

7 Potassium bromide

8 Potassium iodide

9 Potassium hydrogen carbonate

10 Potassium nitrite

11 Magnesium chloride

12 Magnesium nitrate

13 Magnesium hydroxide

14 Magnesium oxide

15 Magnesium carbonate

16	Calcium oxide
17	Calcium chloride
18	Calcium sulfate
19	Calcium carbonate
20	Barium chloride
21	Barium sulfate
22	Aluminium chloride
23	Aluminium oxide
24	Aluminium hydroxide
25	Aluminium sulfate
26	Copper(II) sulfate
27	Copper(II) oxide
28	Copper(II) chloride
29	Copper(II) nitrate
30	Copper(I) oxide
31	Copper(I) chloride
32	Zinc nitrate
33	Zinc carbonate

34 Zinc oxide

35 Silver chloride

36 Silver bromide

37 Silver iodide

38 Silver nitrate

39 Silver oxide

40 Lead(II) nitrate

41 Lead(II) carbonate

42 Lead(II) oxide

43 Lead(IV) oxide

44 Lead(II) chloride

45 Lead(IV) chloride

46 Lead(II) sulfide

47 Tin(II) chloride

48 Tin(IV) chloride

49 Iron(II) sulfate

50 Iron(II) chloride

51 Iron(III) sulfate

52 Iron(III) chloride

53	Iron(III) hydroxide
54	Iron(II) Hydroxide
55	Ammonium chloride
56	Ammonium carbonate
57	Ammonium hydroxide
58	Ammonium nitrate
59	Ammonium sulfate
60	Ammonium phosphate
61	Phosphorus trichloride
62	Phosphorus pentachloride
63	Phosphorus trioxide
64	Phosphorus pentoxide
65	Hydrogen phosphate (Phosphoric acid)
66	Hydrogen sulfate (Sulfuric acid)
67	Hydrogen nitrate (Nitric acid)
68	Hydrogen chloride (Hydrochloric acid)
69	Carbon tetrachloride
70	Silicon tetrachloride

71 Silicon dioxide

72 Sulfur dioxide

73 Sulfur trioxide

74 Hydrogen sulfide

75 Chlorine(I) oxide

76 Nitrogen dioxide

77 Nitrogen monoxide

78 Carbon dioxide

79 Carbon monoxide

80 Hydrogen hydroxide

Section 3: Naming of compounds

At Advanced GCE Level you will meet many compounds that are new to you and a lot of these will be organic compounds. In this section, you will look at the naming of compounds you may already have met at GCSE Level. Many of these compounds are named using simple rules. However, there are some that have 'trivial' names not fixed by the rules. It is important that you learn the names and formulae of these compounds. Later in the course, you will learn the rules for naming most of the organic compounds you will meet.

Naming inorganic compounds

The name of an inorganic compound must show which elements are present and, where confusion is possible, the oxidation state (or charge) of the elements concerned.
1 You need to remember that if there are only two elements present then the name will end in -ide

Oxides contain an element and oxygen, eg

$\mathrm{Na}_{2} \mathrm{O}$	is Sodium Oxide
CaO	is Calcium Oxide

Chlorides contain an element and chlorine, eg
MgCl_{2} is Magnesium Chloride
AlCl_{3} is Aluminium Chloride

Bromides and lodides have an element and either bromine or iodine, eg

KBr	is Potassium Bromide
Znl	is Zinc lodide

Hydrides contain an element and hydrogen and Nitrides an element and nitrogen, eg
LiH is Lithium Hydride
$\mathrm{Mg}_{3} \mathrm{~N}_{2}$ is Magnesium Nitride

Other elements also form these types of compounds and the name always ends in -ide. The exceptions to this are hydroxides which have the -OH group, and cyanides which have the -CN group, eg

NaOH	is Sodium Hydroxide	
$\mathrm{Ca}(\mathrm{OH})_{2}$	is	Calcium Hydroxide
KCN	is	Potassium Cyanide

2 If the elements concerned have more than one oxidation state (or charge) this may need to be shown. For example as iron can have charge +2 or +3 , the name Iron Chloride would not tell you which of the two possible compounds FeCl_{2} or FeCl_{3} is being considered. In this case the oxidation state (or charge) of the iron is indicated by the use of a roman II or III in brackets after the name of the metal. In this case Iron(II) Chloride for FeCl_{2} or Iron(III) Chloride for FeCl_{3}. Other examples are:

PbCl_{2}	is	Lead(II) Chloride
PbCl_{4}	is	Lead(IV) Chloride
$\mathrm{Fe}(\mathrm{OH})_{2}$	is	
$\mathrm{Mn}(\mathrm{OH})_{2}$	is	Man(II) Hydroxide
F		

3 For compounds containing two non-metal atoms the actual number of atoms of the element present are stated, eg:

| CO | is Carbon Monoxide where mon- means one |
| :--- | :--- | :--- |
| CO_{2} | is Carbon Dioxide where di- means two | SO_{2} is Sulfur Dioxide. This could be called Sulfur(IV) Oxide

4 Where a compound contains a metal, a non-metal and oxygen it has a name ending in -ate or -ite. You need to remember the names and formulae of the groups listed in the table Symbols and charges of common elements and ions. To cover the ideas we will look at the following groups.

Carbonate	$-\mathrm{CO}_{3}$
Sulfate	$-\mathrm{SO}_{4}$
Nitrate	$-\mathrm{NO}_{3}$

A compound of sodium, carbon and oxygen would be $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and would be called Sodium Carbonate. For example:

NaNO_{3}	is	Sodium Nitrate
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	is	Magnesium Nitrate
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	is	Iron(III) Sulfate
FeSO_{4}	is	Iron(II) Sulfate.

5 As most non-metals can have more than one oxidation state (or charge). For example sulfur can form sulfates and sulfites. The ending -ite is used when an element forms more than one such compound. In all cases the -ite is used for the compound with the lower number of oxygen atoms. Sulfate can also be referred to as sulfate(VI) and sulfite can also be referred to as sulfate(IV). In the case of nitrogen with oxygen the compounds would be nitrate and nitrite or nitrate(V) and nitrate(III).
Other elements can form compounds involving oxygen in this way. These include Chlorate(V), Chromate(VI), Manganate(VII) and Phosphate(V). For example:

KNO_{2}	is Potassium Nitrite or Potassium Nitrate(III)	
$\mathrm{Na}_{2} \mathrm{SO}_{3}$	is	Sodium Sulfite or Sodium Sulfate(IV)
$\mathrm{K}_{2} \mathrm{CrO}_{4}$	is Potassium Chromate(VI)	
KMnO_{4}	is Potassium Manganate(VII)	
KClO_{3}	is Potassium Chlorate(V).	

In summary

Common name	Systematic name	Formulae
Sulfate	Sulfate(VI)	$-\mathrm{SO}_{4}$
Sulfite	Sulfate(IV)	$-\mathrm{SO}_{3}$
Nitrate	Nitrate(V)	$-\mathrm{NO}_{3}$
Nitrite	Nitrate(III)	$-\mathrm{NO}_{2}$
Chlorate	Chlorate(V)	-ClO
Hypochlorite	Chlorate(I)	-ClO

Great care needs to be taken when using these systematic names, because the properties of the two groups of compounds will be very different. In some cases use of the wrong compound in a reaction can cause considerable danger. For this reason you should always read the label on a bottle or jar and make sure it corresponds exactly to what you should be using.

6 When a compound is being considered it is usual to write the metal down first, both in the name and the formula. The exceptions to this are in organic compounds where the name has the metal first but the formula has the metal at the end, eg
$\mathrm{CH}_{3} \mathrm{COONa}$ is Sodium Ethanoate.

7 The elements nitrogen and hydrogen can join together to form a group called the ammonium group. This must not be confused with the compound ammonia. The ammonium group has the formula $\mathrm{NH}_{4}{ }^{+}$and sits in the place generally taken by a metal in a formula.

$\mathrm{NH}_{4} \mathrm{Cl}$	is Ammonium Chloride
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	is Ammonium Sulfate
$\mathrm{NH}_{4} \mathrm{ClO}_{3}$	is Ammonium Chlorate(V).

8 There are a small number of simple molecules that do not follow the above rules. You will need to learn their names and formulae. They include:

Water	which is $\mathrm{H}_{2} \mathrm{O}$
Sulfuric Acid	which is $\mathrm{H}_{2} \mathrm{SO}_{4}$
Nitric Acid	which is HNO_{3}
Hydrochloric Acid	which is HCl
Ammonia	which is NH_{3}
Methane	which is CH_{4}.

9 Organic compounds have their own set of naming and you will need to learn some of the basic rules. The names are generally based on the names of the simple hydrocarbons. These follow a simple pattern after the first four:

| CH_{4} | is Methane |
| ---: | :--- | :--- |
| $\mathrm{C}_{2} \mathrm{H}_{6}$ | is Ethane |
| $\mathrm{C}_{3} \mathrm{H}_{8}$ | is Propane |
| $\mathrm{C}_{4} \mathrm{H}_{10}$ | is Butane. |

After butane the names are based on the prefix for the number of carbons, C_{5}-pent, C_{6} - hex and so on.
Organic compounds with 2 carbons will either start with Eth- or have -eth- in their name, eg

$\mathrm{C}_{2} \mathrm{H}_{4}$	is Ethene	
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	is Ethanol	
$\mathrm{CH}_{3} \mathrm{COOH}$	is	Ethanoic Acid.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	is	Chloroethane

Exercise 3: Names from formulae

Use the notes in this section, the data in the table Symbols and charges of common elements and ions and the copy of the periodic table in Section 12 to write the names of the following formulae. Before you start this exercise make sure you have read Section 2: Chemical formulae.

1	$\mathrm{H}_{2} \mathrm{O}$
2	CO_{2}
3	NH_{3}
4	O_{2}
5	H_{2}
6	SO_{2}
7	SO_{3}
8	HCl
9	HI
10	HF
11	CH_{4}
12	$\mathrm{H}_{2} \mathrm{~S}$
13	HBr
14	$\mathrm{H}_{2} \mathrm{SO}_{4}$
15	HNO_{3}
16	NaCl
17	NaNO_{3}
18	$\mathrm{Na}_{2} \mathrm{CO}_{3}$
19	NaOH
20	$\mathrm{Na}_{2} \mathrm{SO}_{4}$
21	CaCl_{2}
22	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
23	$\mathrm{Ca}(\mathrm{OH})_{2}$

24	CaSO_{4}
25	BaCl_{2}
26	AlCl_{3}
27	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
28	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
29	FeSO_{4}
30	FeCl_{2}
31	FeCl_{3}
32	$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
33	PbO
34	PbO_{2}
35	$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
36	PbCl_{2}
37	PbSO_{4}
38	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
39	CuCl
40	CuCl_{2}
41	CuSO_{4}
42	ZnCl_{2}
43	AgNO_{3}
44	$\mathrm{NH}_{4} \mathrm{Cl}$
45	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
46	$\mathrm{NH}_{4} \mathrm{VO}_{3}$ (V is Vanadium)
47	KClO_{3}
48	KIO_{3}
49	NaClO
50	NaNO_{2}

51	$\mathrm{C}_{2} \mathrm{H}_{6}$
52	$\mathrm{C}_{4} \mathrm{H}_{10}$
53	$\mathrm{C}_{8} \mathrm{H}_{18}$
54	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
55	KMnO_{4}
56	$\mathrm{~K}_{2} \mathrm{CrO}_{4}$
57	KHCO_{3}
58	KI
59	$\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$
60	KAt

Section 4: The mole

When chemists measure how much of a particular chemical reacts they measure the amount in grams or the volume of a gas. However, chemists find it convenient to use a unit called a mole. You need to know and be able to use several definitions of a mole.

- The mole is the amount of substance which contains the same number of particles (atoms, ions, molecules, formulae or electrons) as there are carbon atoms in 12 g of carbon -12.
- This number is known as the Avogadro constant, L, and is equal to $6.02 \times 10^{23} \mathrm{~mol}^{-1}$.
- The molar mass of a substance is the mass, in grams, of one mole.
- The molar volume of a gas is the volume occupied by one mole at room temperature and atmospheric pressure (r.t.p). It is equal to $24 \mathrm{dm}^{3}$ at r.t.p.
- Avogadro's Law states that equal volumes of all gases, under the same conditions of temperature and atmospheric pressure contain the same number of moles or molecules. If the volume is $24 \mathrm{dm}^{3}$, at room temperature and pressure, this number, is the Avogadro constant.

When you talk about moles, you must always state whether you are dealing with atoms, molecules, ions, formulae etc. To avoid any ambiguity it is best to show this as a formula.

Example calculations using moles

These calculations form the basis of many of the calculations you will meet in your Advanced Level course.

Example 1

Calculation of the number of moles of material in a given mass of that material

a Calculate the number of moles of oxygen atoms in 64 g of oxygen atoms. You need the mass of one mole of oxygen atoms. This is the Relative Atomic Mass in grams and in this case it is $16 \mathrm{~g} \mathrm{~mol}^{-1}$.

$$
\text { number of moles of atoms }=\frac{\text { mass ingrams }}{\text { molarmass of atoms }}
$$

$$
\begin{aligned}
\therefore \text { number of moles of oxygen } & =\frac{64 \mathrm{~g} \text { of oxygen atoms }}{\text { molar mass of oxygen of } 16 \mathrm{~g} \mathrm{~mol}^{-1}} \\
& =4 \text { moles of oxygen atoms }
\end{aligned}
$$

b Calculate the number of moles of chlorine molecules in 142 g of chlorine gas.

$$
\text { number of moles of atoms }=\frac{\text { mass ingrams }}{\text { molarmass of atoms }}
$$

The first stage of this calculation is to calculate the molar mass of chlorine molecules. Molar mass of $\mathrm{Cl}_{2}=2 \times 35.5=71 \mathrm{~g} \mathrm{~mol}^{-1}$
\therefore number of moles of chlorine $=\frac{142 \mathrm{~g} \text { of chlorine gas }}{\text { molar mass of chlorine of } 71 \mathrm{~g} \mathrm{~mol}^{-1}}$
$=\quad 2$ moles of chlorine molecules

C Calculate the number of moles of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ in 100 g of the solid.
The Relative Molecular Mass of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=$ $[63.5+32.1+(4 \times 16)+5\{(2 \times 1)+16\}]=249.6 \mathrm{~g} \mathrm{~mol}^{-1}$
\therefore number of moles of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=\frac{100 \mathrm{~g} \text { of } \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}}{\text { molecular mass of } \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \text { of } 249 \cdot 5 \mathrm{gmol}^{-1}}$
$=0.4006$ moles of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ molecules

Example 2

Calculation of the mass of material in a given number of moles of that material
$\left.\begin{array}{c}\text { The mass of a given } \\ \text { number of moles }\end{array}=\quad \begin{array}{c}\text { the mass of } \\ 1 \text { mole }\end{array} \quad x \quad \begin{array}{c}\text { the number of moles of } \\ \text { material concerned }\end{array}\right]$
a Calculate the mass of 3 moles of sulfur dioxide SO_{2}.
1 mole of sulfur dioxide has a mass $=32.1+(2 \times 16)=64.1 \mathrm{~g} \mathrm{~mol}^{-1}$
$\therefore 3$ moles of $\mathrm{SO}_{2}=3 \times 64.1=192.3 \mathrm{~g}$
b What is the mass of 0.05 moles of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$?
1 mole of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}=[(23 \times 2)+(32.1 \times 2)+(16 \times 3)]+5[(2 \times 1)+16]=248.2 \mathrm{~g} \mathrm{~mol}^{-1}$
$\therefore 0.05$ moles of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}=0.05 \times 248.2=12.41 \mathrm{~g}$

Example 3

Calculation of the volume of a given number of moles of a gas
You will be given the information that 1 mole of any gas has a volume of $24 \mathrm{dm}^{3}$
$\left(24,000 \mathrm{~cm}^{3}\right)$ at room temperature and pressure.

```
\therefore The volume of a given number = number of moles x 24000 cm
of moles of gas
```

a What is the volume of 2 mol of carbon dioxide?
Remember you do not need to work out the molar mass to do this calculation as it does not matter what gas it is.
$\therefore 2$ moles of carbon dioxide $=2 \times 24000 \mathrm{~cm}^{3}=48000 \mathrm{~cm}^{3}=48 \mathrm{dm}^{3}$
b What is the volume of 0.0056 moles of chlorine molecules?
Volume of 0.0056 moles of chlorine $=0.0056 \times 24000 \mathrm{~cm}^{3}=134.4 \mathrm{~cm}^{3}$

Example 4

Calculation of the number of moles of gas in a given volume of that gas

$$
\text { number of moles of gas }=\frac{\text { volume of gas incm }}{}{ }^{3}
$$

a Calculate the number of moles of hydrogen molecules in $240 \mathrm{~cm}^{3}$ of the gas.
number of moles $=\frac{240 \mathrm{~cm}^{3}}{24000 \mathrm{~cm}^{3}}=0.010$ moles
b How many moles of a gas are there in $1000 \mathrm{~cm}^{3}$ of the gas?
number of moles of gas $=\frac{1000 \mathrm{~cm}^{3}}{24000 \mathrm{~cm}^{3}}=0.0147$ moles

Example 5

Calculation of the volume of a given mass of gas

For this calculation you need to apply the skills covered in the previous examples.
Calculate the volume of 10 g of hydrogen gas.
This is a two-stage calculation a) you need to calculate how many moles of hydrogen gas are present and b) you need to convert this to a volume.
\therefore number of moles of hydrogen $\left(\mathrm{H}_{2}\right)=\frac{10 \mathrm{~g} \text { of hydrogen }\left(\mathrm{H}_{2}\right)}{\text { molecular mass of hydrogen }\left(\mathrm{H}_{2}\right) \text { of } 2 \mathrm{~g} \mathrm{~mol}^{-1}}$
$=5$ moles
$\therefore 5$ moles of hydrogen $=5 \times 24000 \mathrm{~cm}^{3}=120000 \mathrm{~cm}^{3}=120 \mathrm{dm}^{3}$

Example 6

Calculation of the mass of a given volume of gas

For this calculation you need to apply the skills covered in the previous examples.
Calculate the mass of $1000 \mathrm{~cm}^{3}$ of carbon dioxide.
Again this is a two-stage calculation a) you need to calculate the number of moles of carbon dioxide and then b) convert this to a mass.
\therefore number of moles of $\mathrm{CO}_{2}=\frac{1000 \mathrm{~cm}^{3} \text { of } \mathrm{CO}_{2}}{\text { volume of } 1 \mathrm{~mole} \mathrm{of}_{\mathrm{CO}_{2} \text { of } 24000 \mathrm{~cm}^{3}} \text {. }}$
$=0.0147$ moles
$\therefore 0.0147$ moles of carbon dioxide $=0.0147 \times 44 \mathrm{~g}=1.833 \mathrm{~g}$

Example 7

Calculation of the molar mass of a gas from mass and volume data for the gas
For calculations of this type you need to find the mass of 1 mole of the gas, ie $24000 \mathrm{~cm}^{3}$. This is the molar mass of the gas.
For example, calculate the Relative Molecular Mass of a gas for which $100 \mathrm{~cm}^{3}$ of the gas at room temperature and pressure have a mass of 0.0667 g .
$100 \mathrm{~cm}^{3}$ of the gas has a mass of 0.0667 g .
$\therefore 24000 \mathrm{~cm}^{3}$ of the gas must have a mass of $=\frac{0.0667 \mathrm{~g} \times 24000 \mathrm{~cm}^{3}}{100 \mathrm{~cm}^{3}}$
$=16 \mathrm{~g}$
\therefore The molar mass of the gas is $16 \mathbf{g ~ m o l}^{-1}$

Exercise 4a: Calculation of the number of moles of material in a given mass of that material

In this set of calculations all the examples chosen are from the list of compounds whose molar mass you calculated in Exercise 1.

In each case calculate the number of moles of the material in the mass stated.

1	9.00 g of $\mathrm{H}_{2} \mathrm{O}$
2	88.0 g of CO_{2}
3	1.70 g of NH_{3}
4	230 g of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
5	560 g of $\mathrm{C}_{2} \mathrm{H}_{4}$
6	0.641 g of SO_{2}
7	80.1 g of SO_{3}
8	18.20 g of HBr
9	0.0981 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$
10	3.15 g of HNO_{3}
11	19.3 g of NaCl
12	21.25 g of NaNO_{3}
13	2.25 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
14	0.800 g of NaOH
15	17.77 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$

16	3.16 g of KMnO_{4}
17	32.36 g of $\mathrm{K}_{2} \mathrm{CrO}_{4}$
18	100.1 g of KHCO_{3}
19	7.63 g of KI
20	3.90 g of CsNO_{3}
21	0.1111 g of CaCl_{2}
22	41.025 g of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
23	1.482 g of $\mathrm{Ca}(\mathrm{OH})_{2}$
24	3.405 g of CaSO_{4}
25	41.66 g of BaCl_{2}
26	14.96 g of CuSO_{4}
27	13.64 g of ZnCl_{2}
28	1.434 g of AgNO_{3}
29	13.76 g of $\mathrm{NH}_{4} \mathrm{Cl}$
30	13.77 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
31	23.4 g of $\mathrm{NH}_{4} \mathrm{VO}_{3}$
32	10.01 g of KClO_{3}
33	10.7 g of KIO_{3}
34	100 g of NaClO

35	1.70 g of NaNO_{2}
36	50.9 g of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
37	19.6 g of $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
38	9.64 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} . \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} .24 \mathrm{H}_{2} \mathrm{O}$
39	12.4 g of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$
40	32.0 g of $(\mathrm{COOH})_{2} .2 \mathrm{H}_{2} \mathrm{O}$
41	3.076 g of $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
42	40.0 g of $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4} .2 \mathrm{H}_{2} \mathrm{O}$
43	6.00 g of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
44	3.10 g of $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
45	0.530 g of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$
46	4.79 g of AlCl_{3}
47	56.75 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
48	8.36 g of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
49	3.8 g of FeSO_{4}
50	199.7 g of FeCl_{2}

Exercise 4b: Calculation of the mass of material in a given number of moles of at material

In each case calculate the mass in grams of the material in the number of moles stated.

1	2 moles of $\mathrm{H}_{2} \mathrm{O}$
2	3 moles of CO_{2}
3	2.8 moles of NH_{3}
4	0.50 moles of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
5	1.2 moles of $\mathrm{C}_{2} \mathrm{H}_{4}$
6	0.64 moles of SO_{2}
7	3 moles of SO_{3}
8	1 mole of HBr
9	0.012 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$
10	0.15 moles of HNO_{3}
11	0.45 moles of NaCl
12	0.70 moles of NaNO_{3}
13	0.11 moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
14	2.0 moles of NaOH
15	0.90 moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
16	0.050 moles of KMnO_{4}

17	0.18 moles of $\mathrm{K}_{2} \mathrm{CrO}_{4}$
18	0.90 moles of KHCO_{3}
19	1.5 moles of KI
20	0.12 moles of CsNO_{3}
21	0.11 moles of CaCl_{2}
22	4.1 moles of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
23	0.0040 moles of $\mathrm{Ca}(\mathrm{OH})_{2}$
24	0.10 moles of CaSO_{4}
25	0.21 moles of BaCl_{2}
26	0.10 moles of CuSO_{4}
27	0.56 moles of ZnCl_{2}
28	0.059 moles of AgNO_{3}
29	0.333 moles of $\mathrm{NH}_{4} \mathrm{Cl}$
30	1.1 moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
31	0.025 moles of $\mathrm{NH}_{4} \mathrm{VO}_{3}$
32	0.10 moles of KClO_{3}
33	0.10 moles of KIO_{3}
34	10 moles of NaClO
35	0.0010 moles of NaNO_{2}

36	0.20 moles of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
37	0.10 moles of $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
38	0.0050 moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} .24 \mathrm{H}_{2} \mathrm{O}$
39	0.040 moles of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$
40	2.4 moles of $(\mathrm{COOH})_{2} .2 \mathrm{H}_{2} \mathrm{O}$
41	3.075 moles of $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
42	0.15 moles of $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4} .2 \mathrm{H}_{2} \mathrm{O}$
43	0.17 moles of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
44	0.20 moles of $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
45	0.080 moles of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$
46	0.0333 moles of AlCl_{3}
47	0.045 moles of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
48	0.12 moles of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
49	2.0 moles of FeSO_{4}
50	11 moles of FeCl_{2}

Exercise 4c: Calculation of the volume of a given number of moles of a gas

In each case calculate the volume of the number of moles of gas stated.
(Assume that all volumes are measured at room temperature and pressure and that 1 mole of gas has a volume of $24000 \mathrm{~cm}^{3}$ under these conditions.)
$1 \quad 1$ mole of CO_{2}
20.1 moles of NH_{3}
$3 \quad 0.5$ moles of $\mathrm{C}_{2} \mathrm{H}_{4}$

42 moles of SO_{2}
$5 \quad 0.12$ moles of SO_{3}
$6 \quad 3.4$ moles of HBr
$7 \quad 0.11$ moles of Cl_{2}
$8 \quad 0.0040$ moles of CH_{4}
$9 \quad 10$ moles of H_{2}
$10 \quad 0.45$ moles of O_{2}
110.0056 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$
$12 \quad 0.0090$ moles of $\mathrm{C}_{3} \mathrm{H}_{8}$
$13 \quad 0.040$ moles of $\mathrm{C}_{2} \mathrm{H}_{2}$
$14 \quad 0.123$ moles of NO
$15 \quad 0.0023$ moles of HCl

168.0 moles of HBr

$17 \quad 0.000010$ moles of HI
$18 \quad 6.0$ moles of NO_{2}
$19 \quad 0.0076$ moles of F_{2}
203.0 moles of N_{2}

Exercise 4d: Calculation of the number of moles of gas in a given volume of that gas

In each case calculate the volume of the number of moles of gas stated.
(Assume that all volumes are measured at room temperature and pressure and that 1 mol of gas has a volume of $24000 \mathrm{~cm}^{3}$ under these conditions.)

1	$200 \mathrm{~cm}^{3}$ of CO_{2}
2	$500 \mathrm{~cm}^{3}$ of NH_{3}
3	$1000 \mathrm{~cm}^{3}$ of $\mathrm{C}_{2} \mathrm{H}_{4}$
4	$2000 \mathrm{~cm}^{3}$ of SO_{2}
5	$234 \mathrm{~cm}^{3}$ of SO_{3}
6	$226 \mathrm{~cm}^{3}$ of HBr
7	$256 \mathrm{~cm}^{3}$ of Cl_{2}
8	$200 \mathrm{~cm}^{3}$ of CH_{4}
9	$2000 \mathrm{~cm}^{3}$ of H_{2}
10	$2400 \mathrm{~cm}^{3}$ of O_{2}
11	$700 \mathrm{~cm}^{3}$ of $\mathrm{C}_{2} \mathrm{H}_{6}$
12	$5600 \mathrm{~cm}^{3}$ of $\mathrm{C}_{3} \mathrm{H}_{8}$
13	$2200 \mathrm{~cm}^{3}$ of $\mathrm{C}_{2} \mathrm{H}_{2}$
15	$800 \mathrm{~cm}^{3}$ of HCl^{3} of NO^{13}

$1680 \mathrm{~cm}^{3}$ of HBr

$17 \quad 2 \mathrm{~cm}^{3}$ of HI
$18 \quad 20000 \mathrm{~cm}^{3}$ of NO_{2}
$19 \quad 420 \mathrm{~cm}^{3}$ of F_{2}
$20 \quad 900 \mathrm{~cm}^{3}$ of N_{2}

Exercise 4e: Calculation of the volume of a given mass of gas

In each case calculate the volume in cm^{3} of the mass of gas given.
(Assume that all volumes are measured at room temperature and pressure and that 1 mol of gas has a volume of $24000 \mathrm{~cm}^{3}$ under these conditions.)

$\mathbf{1}$	2 g of CO_{2}
$\mathbf{2}$	5 g of NH 3
3	10 g of $\mathrm{C}_{2} \mathrm{H}_{4}$
$\mathbf{4}$	20 g of SO_{2}
$\mathbf{5}$	2.34 g of SO_{3}
$\mathbf{6}$	2.26 g of HBr
$\mathbf{7}$	10 g of Cl
$\mathbf{8}$	20 g of CH

168 g of HBr

172 g of HI

1823 g of NO_{2}
$19 \quad 42 \mathrm{~g}$ of F_{2}
$20 \quad 90 \mathrm{~g}$ of N_{2}

Exercise 4f: Calculation of the mass of a given volume of gas

Calculate the mass of the volume of gases stated below.
(Assume that all volumes are measured at room temperature and pressure and that 1 mol of gas has a volume of $24000 \mathrm{~cm}^{3}$ under these conditions.)

1	$200 \mathrm{~cm}^{3}$ of CO_{2}
2	$500 \mathrm{~cm}^{3}$ of NH_{3}
3	$1000 \mathrm{~cm}^{3}$ of $\mathrm{C}_{2} \mathrm{H}_{4}$
4	$2000 \mathrm{~cm}^{3}$ of SO_{2}
5	$234 \mathrm{~cm}^{3}$ of SO_{3}
6	$226 \mathrm{~cm}^{3}$ of HBr
7	$256 \mathrm{~cm}^{3}$ of Cl_{2}
8	$200 \mathrm{~cm}^{3}$ of CH_{4}
9	$2000 \mathrm{~cm}^{3}$ of H_{2}
10	$2400 \mathrm{~cm}^{3}$ of O_{2}
11	$700 \mathrm{~cm}^{3}$ of $\mathrm{C}_{2} \mathrm{H}_{6}$
12	$5600 \mathrm{~cm}^{3}$ of $\mathrm{C}_{3} \mathrm{H}_{8}$
13	$2200 \mathrm{~cm}^{3}$ of $\mathrm{C}_{2} \mathrm{H}_{2}$
14	$210 \mathrm{~cm}^{3}$ of NO
15	$800 \mathrm{~cm}^{3}$ of HCl

$1680 \mathrm{~cm}^{3}$ of HBr

$17 \quad 2 \mathrm{~cm}^{3}$ of HI
$18 \quad 20000 \mathrm{~cm}^{3}$ of NO_{2}
$19 \quad 420 \mathrm{~cm}^{3}$ of F_{2}
$20 \quad 900 \mathrm{~cm}^{3}$ of N_{2}

Exercise 4g: Calculation of the Relative Molecular Mass of a gas from mass and volume data for the gas

In each case you are given the mass of a certain volume of an unknown gas. From each set of data calculate the Relative Molecular Mass of the gas.
(Assume that all volumes are measured at room temperature and pressure and that 1 mol of gas has a volume of $24000 \mathrm{~cm}^{3}$ under these conditions.)
$1 \quad 0.373 \mathrm{~g}$ of gas occupy $56 \mathrm{~cm}^{3}$
$2 \quad 0.747 \mathrm{~g}$ of gas occupy $280 \mathrm{~cm}^{3}$
$3 \quad 0.467 \mathrm{~g}$ of gas occupy $140 \mathrm{~cm}^{3}$
$4 \quad 0.296 \mathrm{~g}$ of gas occupy $100 \mathrm{~cm}^{3}$
$5 \quad 0.0833 \mathrm{~g}$ of gas occupy $1000 \mathrm{~cm}^{3}$
$6 \quad 0.175 \mathrm{~g}$ of gas occupy $150 \mathrm{~cm}^{3}$
$7 \quad 0.375 \mathrm{~g}$ of gas occupy $300 \mathrm{~cm}^{3}$
$8 \quad 0.218 \mathrm{~g}$ of gas occupy $90 \mathrm{~cm}^{3}$
$9 \quad 0.267 \mathrm{~g}$ of gas occupy $200 \mathrm{~cm}^{3}$
$10 \quad 1.63 \mathrm{~g}$ of gas occupy $1400 \mathrm{~cm}^{3}$
$11 \quad 0.397 \mathrm{~g}$ of gas occupy $280 \mathrm{~cm}^{3}$
$12 \quad 0.198 \mathrm{~g}$ of gas occupy $280 \mathrm{~cm}^{3}$
$13 \quad 0.0602 \mathrm{~g}$ of gas occupy $38 \mathrm{~cm}^{3}$
$14 \quad 0.0513 \mathrm{~g}$ of gas occupy $44 \mathrm{~cm}^{3}$
$15 \quad 0.0513 \mathrm{~g}$ of gas occupy $28 \mathrm{~cm}^{3}$
$16 \quad 1.33 \mathrm{~g}$ of gas occupy $1000 \mathrm{~cm}^{3}$
$17 \quad 8.79 \mathrm{~g}$ of gas occupy $1000 \mathrm{~cm}^{3}$
$18 \quad 0.0760 \mathrm{~g}$ of gas occupy $50 \mathrm{~cm}^{3}$
$19 \quad 0.338 \mathrm{~g}$ of gas occupy $100 \mathrm{~cm}^{3}$
$20 \quad 0.667 \mathrm{~g}$ of gas occupy $125 \mathrm{~cm}^{3}$

Section 5: Using the idea of moles to find formulae

You can find the formula of copper(II) oxide by passing a stream of hydrogen over a known mass of copper oxide and weighing the copper formed.

- A known mass of copper(II) oxide is used.
- A stream of hydrogen from a cylinder is passed over the copper until all the air has been swept out of the apparatus.
- Copper(II) oxide is heated to constant mass (until two consecutive mass determinations at the end of the experiment are same) in a stream of dry hydrogen.
- The mass of the copper produced is finally determined.

Note

- Excess hydrogen must not be ignited until it has been tested (by collection in a test tube) to make sure that all the air has been expelled from the apparatus. If the hydrogen in the test tube burns quietly, without a 'squeaky pop', then it is safe to ignite it at the end of the tube.
- The combustion tube is tilted to prevent the condensed steam from running back on to the hot part of the tube.
- When the reduction process is complete, ie after heating to constant mass, the tube is allowed to cool with hydrogen still being passed over the remaining copper. This is to prevent the copper from being oxidised to copper(II) oxide.

The working on the next page shows you how to calculate the following results.

Typical results

Mass of copper (II) oxide	$=4.97 \mathrm{~g}$
Mass of copper	$=3.97 \mathrm{~g}$
Mass of oxygen	$=1.00 \mathrm{~g}$

	\div by relative atomic mass (r.a.m)	\div by smallest	Ratio of atoms
Moles of copper atoms	$\frac{3.97}{63.5}=0.0625$	$\frac{0.0625}{0.0625}=1$	1
Moles of oxygen atoms	$\frac{1}{16}=0.0625$	$\frac{0.0625}{0.0625}=1$	1

Therefore, the simplest (or empirical) formula is CuO.

The apparatus may be modified to determine the formula of water. Anhydrous calcium chloride tubes are connected to the end of the combustion tube and the excess hydrogen ignited at the end of these tubes. Anhydrous calcium chloride absorbs water; the mass of the tubes is determined at the beginning and end of the experiment. The increase in mass of the calcium chloride tubes is equal to the mass of water produced.
Typical results
$\begin{array}{ll}\text { Mass of water } & =1.125 \mathrm{~g} \\ \text { Mass of oxygen (from previous results) } & =1.000 \mathrm{~g} \\ \text { Mass of hydrogen } & =0.125 \mathrm{~g}\end{array}$

	\div by r.a.m	\div by smallest	Ratio of atoms
Moles of hydrogen atoms	$\frac{0.125}{1}=0.125$	$\frac{0.125}{0.0625}=2$	2
Moles of oxygen atoms	$\frac{1}{16}=0.0625$	$\frac{0.0625}{0.0625}=1$	1

Since the ratio of hydrogen to oxygen is $2: 1$ the simplest (or empirical) formula is $\mathrm{H}_{2} \mathrm{O}$.
In examination calculations of this type the data is often not presented as mass, but as a percentage composition of the elements concerned. In these cases, the calculation is carried out in the same way as percentage composition is the mass of the element in 100 g of the compound.

Example 1

Sodium burns in excess oxygen to give a yellow solid oxide that contains 58.97% of sodium. What is the empirical formula of the oxide?

NB: This is an oxide of sodium. It must only contain Na and O. Since the percentage of $N a$ is 58.97 that of 0 must be $100-58.97=41.03 \%$.

	\div by r.a.m	\div by smallest	Ratio of atoms
Moles of sodium atoms	$\frac{58.97}{23}=2.564$	$\frac{2.564}{2.564}=1$	1
Moles of oxygen atoms	$\frac{41.03}{16}=2.564$	$\frac{2.564}{2.564}=1$	1

Therefore, the empirical formula is NaO .
The result of the above calculation does not seem to lead to a recognisable compound of sodium. This is because the method used only gives the simplest ratio of the elements - but see below.

Consider the following series of organic compounds.
$\mathrm{C}_{2} \mathrm{H}_{4}$ ethene, $\mathrm{C}_{3} \mathrm{H}_{6}$ propene, $\mathrm{C}_{4} \mathrm{H}_{8}$ butene, $\mathrm{C}_{5} \mathrm{H}_{10}$ pentene. These all have the same empirical formula CH_{2}.

To find the Molecular Formula for a compound it is necessary to know the Relative Molecular Mass (M_{r}).

Molecular Formula Mass = Empirical Formula Mass x a whole number (n)

In the example above the oxide has an $M_{r}=78 \mathrm{~g} \mathrm{~mol}^{-1}$.
Thus

$$
\begin{aligned}
\text { Molecular Formula Mass } & =78 \\
\text { Empirical Formula Mass } & =(\mathrm{Na}+\mathrm{O})=23+16=39 \\
\therefore 78 & =39 \times \mathrm{n} \\
\therefore \mathrm{n} & =2
\end{aligned}
$$

The Molecular Formula becomes $(\mathrm{NaO})_{2}$ or $\mathrm{Na}_{2} \mathrm{O}_{2}$

Example 2

A compound P contains 73.47% carbon and 10.20% hydrogen by mass, the remainder being oxygen. It is found from other sources that P has a Relative Molecular Mass of $98 \mathrm{~g} \mathrm{~mol}^{-1}$. Calculate the Molecular Formula of P.

NB: It is not necessary to include all details when you carry out a calculation of this type. The following is adequate.

	C	H O	
H3.47	10.20	(100-73.47-10.20) $=16.33$	
By r.a.m	$\frac{73.47}{12}$	$\frac{10.20}{1}$	$\frac{16.33}{16}$
By smallest	$\frac{6.1225}{1.020}$	$\frac{10.20}{1.020}$	$=1.020$
Ratio of atoms	6	10	$\frac{1.020}{1.020}$

Therefore, the empirical formula is $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$.
To find Molecular Formula:

$$
\begin{aligned}
\text { Molecular Formula Mass } & =\text { Empirical Formula Mass } \times \text { whole number }(\mathrm{n}) \\
98 & =[(6 \times 12)+(10 \times 1)+16] \times \mathrm{n}=98 \times \mathrm{n} \\
\therefore \mathrm{n} & =1
\end{aligned}
$$

The molecular formula is the same as the empirical formula $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$.

A warning

In calculations of this type at GCE Advanced Level you may meet compounds that are different but have very similar percentage composition of their elements. When you carry out a calculation of this type you should never round up the figures until you get right to the end of the calculation. For example $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{NH}_{2} \mathrm{OH}$ have a very similar composition and if you round up the data from one you may well get the other. If you are told the Relative Molecular Mass and your Empirical Formula Mass is not a simple multiple of this you need to check your calculation.

Example 3

Calculate the empirical formula of a compound with the percentage composition:
C 39.13\%; O 52.17\%; H 8.700\%.

	C	O	H
By r.a.m	$\frac{39.13}{12}$	$\frac{52.17}{16}$	$\frac{8.700}{1}$
	$=3.26$	$=3.25$	$=8.70$
Divide by smallest	1	1	2.66

It is clear at this stage that dividing by the smallest has not resulted in a simple ratio. You must not round up or down at this stage. You must look at the numbers and see if there is some factor that you could multiply each by to get each one to a whole number. In this case, if you multiply each by 3 you will get:

C	O	H
3	3	8

$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$ is the empirical formulae not $\mathrm{C}_{1} \mathrm{H}_{2.66} \mathrm{O}_{1}$
You need to be careful about this; the factors will generally be clear and will be 2 or 3 . You must not round 1.33 to 1 or 1.5 to 2 .

Calculations involving the moles of water of crystallization

In calculations of this type you need to treat the water as a molecule and divide by the Relative Molecular Mass.

Example 4

24.64 grams of a hydrated salt of $\mathrm{MgSO}_{4} . \mathrm{xH}_{2} \mathrm{O}$, gives 12.04 g of anhydrous MgSO_{4} on heating. What is the value of x ?

Your first job is to find the mass of water driven off.
Mass of water evolved $=24.64-12.04=12.60 \mathrm{~g}$

	MgSO_{4}	$\mathrm{H}_{2} \mathrm{O}$
12.04	12.60	
Divide by M_{r}	$\frac{12.04}{120.4}$	$\frac{12.60}{18}$
	$=0.100$	$=0.700$
Ratio of atoms	1	7

Giving a formula of $\mathrm{MgSO}_{4} \cdot \mathbf{7 \mathrm { H } _ { 2 } \mathrm { O }}$

Exercise 5: Calculation of formulae from experimental data

In Section a, calculate the empirical formula of the compound from the given data. This may be as percentage composition or as the masses of materials found in an experiment. For Section b. you are given the data for analysis plus the Relative Molecular Mass of the compound, find the empirical formula and then the molecular formula. Section c. is more difficult. The data is presented in a different way but the calculation of the empirical formula/molecular formula is essentially the same.

Section a

1 Ca 40\%; C 12\%; 048%
$2 \mathrm{Na} 32.4 \%$; S 22.5\%; 0 45.1\%

3 Na 29.1\%; S 40.5\%; 0 30.4\%

4 Pb 92.8\%; 0 7.20\%
$5 \mathrm{~Pb} 90.66 \%$; 09.34%

6 H 3.66\%; P 37.8\%; O 58.5\%

7 H 2.44\%; S 39.0\%; O 58.5\%

8 C 75\%; H 25\%

9 C 81.81\%; H 18.18\%

10 H 5.88\% ; O 94.12\%

11 H 5\%; N 35\%; O 60\%

12 Fe 20.14\%; S 11.51\%; O 63.31\%; H 5.04\%

Section b

13 A hydrocarbon with a Relative Molecular Mass $\left(M_{r}\right)$ of $28 \mathrm{~g} \mathrm{~mol}^{-1}$ has the following composition: carbon 85.7%; hydrogen 14.3%. Calculate its molecular formula.

14 A hydrocarbon with a Relative Molecular Mass $\left(M_{r}\right)$ of $42 \mathrm{~g} \mathrm{~mol}^{-1}$ has the following composition: carbon 85.7\%; hydrogen 14.3%. Calculate its molecular formula.
$15 \quad \mathrm{P} 10.88 \% ; \mathrm{I} 89.12 \% . \mathrm{M}_{\mathrm{r}}=570 \mathrm{~g} \mathrm{~mol}^{-1}$

16 N 12.28\%; H 3.51\%; S 28.07\%; O 56.14\%. $M_{r}=228 \mathrm{~g} \mathrm{~mol}^{-1}$
$17 \quad \mathrm{P} 43.66 \%$; 0 56.34\%. $\mathrm{M}_{\mathrm{r}}=284 \mathrm{~g} \mathrm{~mol}^{-1}$

18 C 40%; H 6.67\%; $053.3 \% . M_{r}=60 \mathrm{~g} \mathrm{~mol}^{-1}$

19 Analysis of a compound with a $M_{r}=58 \mathrm{~g} \mathrm{~mol}^{-1}$ shows that 4.8 g of carbon are joined with 1.0 g of hydrogen. What is the molecular formula of the compound?
$20 \quad 3.348 \mathrm{~g}$ of iron join with 1.44 g of oxygen in an oxide of iron that has a $\mathrm{M}_{\mathrm{r}}=$ $159.6 \mathrm{~g} \mathrm{~mol}^{-1}$ What is the molecular formula of the oxide?

21 A sample of an acid with a $M_{r}=194 \mathrm{~g} \mathrm{~mol}^{-1}$ has 0.5 g of hydrogen joined to 16 g of sulfur and 32 g of oxygen. What is the molecular formula of the acid?

22 Analysis of a hydrocarbon showed that 7.8 g of the hydrocarbon contained 0.6 g of hydrogen and that the $M_{r}=78 \mathrm{~g} \mathrm{~mol}^{-1}$. What is the formula of the hydrocarbon?

Section c

$23 \quad 22.3 \mathrm{~g}$ of an oxide of lead produced 20.7 g of metallic lead on reduction with hydrogen. Calculate the empirical formula of the oxide concerned.

24 When 1.17 g of potassium is heated in oxygen 2.13 g of an oxide is produced. In the case of this oxide the empirical and molecular formulae are the same. What is the molecular formula of the oxide?

25 A hydrocarbon containing 92.3% of carbon has a Relative Molecular Mass of 26 g mol^{-1}. What is the molecular formula of the hydrocarbon?

26 When 1.335 g of a chloride of aluminium is added to excess silver nitrate solution 4.305 g of silver chloride is produced. Calculate the empirical formula of the chloride of aluminium.

Hint; you will need to work out how much chlorine there is in 4.305 g of AgCl . This will be the amount of chlorine in the initial 1.335 g of the aluminium chloride.

2716 g of a hydrocarbon burn in excess oxygen to produce 44 g of carbon dioxide. What is the empirical formula of the hydrocarbon?

Hint: you will need to work out what mass of carbon is contained in 44 g of CO_{2}. This is the mass of C in 16 g of the hydrocarbon.

28 When an oxide of carbon containing 57.1% oxygen is burnt in air the percentage of oxygen joined to the carbon increases to 72.7%. Show that this data is consistent with the combustion of carbon monoxide to carbon dioxide.

29 When 14.97 g of hydrated copper(II) sulfate is heated it produces 9.60 g of anhydrous copper(II) sulfate. What is the formula of the hydrated salt?

30 When the chloride of phosphorus containing 85.1% chlorine is heated a second chloride containing 77.5% chlorine is produced. Find the formulae of the chlorides and suggest what the other product of the heating might be.

Section 6: Chemical equations

Chemical equations do much more than tell us what reacts with what in a chemical reaction. They tell us how many of each type of molecule are needed and produced, so they also tell us what masses of the reactants are needed to produce a given mass of products.
Often you will learn equations that have been given to you. However, if you are to interpret equations correctly you must learn to write them for yourself.

Equations in words

Before you can begin to write an equation, you must know what the reacting chemicals are and what is produced in the reaction. You can then write them down as a word equation. For instance, hydrogen reacts with oxygen to give water, or as a word equation:
hydrogen + oxygen $\quad \rightarrow \quad$ water

Writing formulae

When you have written the equation in words you can then write the formula for each of the substances involved. You may know them or have to look them up. In the above example:

- hydrogen is represented as H_{2}
- oxygen is represented as O_{2}
- water is $\mathrm{H}_{2} \mathrm{O}$.

So we get:
$\mathrm{H}_{2} \quad+\quad \mathrm{O}_{2} \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{O}$

However, this will not suffice as a full equation as you will discover if you read on!

Balancing the equation

One of the most important things you must understand in chemistry is that atoms are rearranged in chemical reactions. They are never produced from 'nowhere' and they do not simply 'disappear'. This means that in a chemical equation you must have the same number of each kind of atoms on the left-hand side of the equation as on the right. Sometimes you need to start with two or more molecules of one of the reactants and you may end up with more than one molecule of one of the products.
Let us look at two very simple examples:

carbon	+	oxygen	\rightarrow	carbon dioxide
C	+	O_{2}	\rightarrow	CO_{2}

Carbon dioxide has one atom of carbon and two atoms of oxygen in one molecule. Carbon is written as C (one atom) and oxygen molecules have two atoms each, written as O_{2}.

This equation does not need balancing because the number of atoms of carbon is the same on the left as on the right (1) and the number of atoms oxygen is also the same (2) - therefore it is already balanced.

Now let us try one that does not work out.

$$
\text { magnesium }+ \text { oxygen } \quad \rightarrow \quad \text { magnesium oxide }
$$

Magnesium is written as Mg (one atom just like carbon) and oxygen is, O_{2}, but magnesium oxide has just one atom of oxygen per molecule and is therefore written as MgO.
$\mathrm{Mg} \quad+\quad \mathrm{O}_{2} \quad \rightarrow \quad \mathrm{MgO}$

The magnesium balances, one atom on the left and one on the right, but the oxygen does not as there are two atoms on the left-hand side of the equation and only one on the right-hand side. You cannot change the formulae of the reactants or products.

Each 'formula' of magnesium oxide has only one atom of oxygen but each molecule of oxygen has two atoms of oxygen, so you can make two formulae of magnesium oxide for each molecule of oxygen. So we get:
$\mathrm{Mg} \quad+\quad \mathrm{O}_{2} \quad \rightarrow \quad 2 \mathrm{MgO}$

Even now the equation does not balance, because we need two atoms of magnesium to make two formulae of MgO , and the final equation is:

$$
2 \mathrm{Mg} \quad+\quad \mathrm{O}_{2} \quad \rightarrow \quad 2 \mathrm{MgO}
$$

Sometimes, you will need to show in the equation whether the chemicals are solid, liquid or gas. You do this by adding in state symbols: (aq) for aqueous solution, (g) for gas, (l) for liquid and (s) for solid or precipitate:

$$
2 \mathrm{Mg}(\mathrm{~s}) \quad+\quad \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{MgO}(\mathrm{~s})
$$

Exercise 6a: Balancing equations

Balance the following equations. To get you started _ indicates in the first six questions where numbers need to be inserted to achieve the balance. In one or two difficult cases some of the numbers have been added. You will not need to change these. Remember all the formulae are correct!

1	_ H_{2}	+	O_{2}	\rightarrow _ $\mathrm{H}_{2} \mathrm{O}$				
2	BaCl_{2}	+	_ NaOH	$\rightarrow \mathrm{Ba}(\mathrm{OH})_{2}$	+	_ NaCl		
3	$\mathrm{H}_{2} \mathrm{SO}_{4}$	+	_ KOH	$\rightarrow-\mathrm{K}_{2} \mathrm{SO}_{4}$	+	$\mathrm{H}_{2} \mathrm{O}$		
4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	+	_ HCl	\rightarrow _KCl	+	$\mathrm{H}_{2} \mathrm{O}$	+	CO_{2}
5	CaCO_{3}	+	_ HNO_{3}	$\rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	+	$\mathrm{H}_{2} \mathrm{O}$	+	CO_{2}

$6 \mathrm{Ca}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
$7 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NaI} \rightarrow \mathrm{PbI}_{2}+\mathrm{NaNO}_{3}$
$8 \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{NaOH} \rightarrow \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
$10 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbO}+\mathrm{NO}_{2}+\mathrm{O}_{2}$

11	FeSO_{4}	\rightarrow	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	+	SO_{2}	+	SO_{3}		
12	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	\rightarrow	$\mathrm{N}_{2} \mathrm{O}$	+	$\mathrm{H}_{2} \mathrm{O}$				
13	NaNO_{3}	\rightarrow	NaNO_{2}	+	O_{2}				
14	CH_{4}	+	O_{2}	\rightarrow	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$		
15	$\mathrm{C}_{4} \mathrm{H}_{10}$	+	O_{2}	\rightarrow	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$		
16	PCl_{3}	+	$\mathrm{H}_{2} \mathrm{O}$	\rightarrow	$\mathrm{H}_{3} \mathrm{PO}_{3}$	+	HCl		
17	$8 \mathrm{HNO}_{3}$	+	3 Cu	\rightarrow	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	+	NO	+	$\mathrm{H}_{2} \mathrm{O}$
18	$4 \mathrm{HNO}_{3}$	+	Cu	\rightarrow	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	+	NO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$
19	$\mathrm{H}_{3} \mathrm{PO}_{4}$	+	NaOH	\rightarrow	$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	+	$\mathrm{H}_{2} \mathrm{O}$		
20	$\mathrm{H}_{3} \mathrm{PO}_{4}$	+	NaOH	\rightarrow	$\mathrm{Na}_{3} \mathrm{PO}_{4}$	+	$\mathrm{H}_{2} \mathrm{O}$		
21	$\mathrm{H}_{3} \mathrm{PO}_{4}$	+	NaOH	\rightarrow	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	+	$\mathrm{H}_{2} \mathrm{O}$		
22	6 NaOH	+	Cl_{2}	\rightarrow	NaClO_{3}	+	NaCl	+	$\mathrm{H}_{2} \mathrm{O}$

Exercise 6b: What's wrong here?

The following equations all contain one or more mistakes. These may be in a formula, in the balancing, in the state symbols or even in the chemistry. You need to identify the error and then write out a correct equation.

1	$\mathrm{Na}(\mathrm{s})$	+	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	\rightarrow	$\mathrm{NaOH}(\mathrm{aq})$	+	$\mathrm{H}(\mathrm{g})$	
2	$\mathrm{PbNO}_{3}(\mathrm{aq})$	+	$\mathrm{NaCl}(\mathrm{aq})$	\rightarrow	$\mathrm{PbCl}(\mathrm{s})$	+	$\mathrm{NaNO}_{3}(\mathrm{aq})$	
3	$\mathrm{CaOH}_{2}(\mathrm{aq})$	+	2 $\mathrm{Cl}(\mathrm{aq}$)	\rightarrow	$\mathrm{CaCl}_{2}(\mathrm{aq})$	+	$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	
4	$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	+	$2 \mathrm{O}_{2}(\mathrm{~g})$	\rightarrow	$2 \mathrm{CO}_{2}(\mathrm{~g})$	+	$2 \mathrm{H}_{2}(\mathrm{~g})$	
5	$\mathrm{MgSO}_{4}(\mathrm{aq})$	+	2 NaOH	\rightarrow	$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$	+	$\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$	
6	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$	+	$\mathrm{CuO}(\mathrm{s})$	\rightarrow	2NO(g)	+	$\mathrm{O}_{3}(\mathrm{~g})$	
7	$\mathrm{Cu}(\mathrm{s})$	+	$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$	\rightarrow	$\mathrm{CuSO}_{4}(\mathrm{aq})$	+	$\mathrm{H}_{2}(\mathrm{~g})$	
8	$\mathrm{AlCl}_{2}(\mathrm{~s})$	+	$2 \mathrm{KOH}(\mathrm{aq})$	\rightarrow	$\mathrm{Al}(\mathrm{OH})_{2}(\mathrm{~s})$	+	$2 \mathrm{KCl}(\mathrm{aq})$	
9	$\mathrm{NaCO}_{3}(\mathrm{~s})$	+	$2 \mathrm{HCl}(\mathrm{aq})$	\rightarrow	$\mathrm{NaCl}_{2}(\mathrm{aq})$	+	$\mathrm{CO}_{2}(\mathrm{~g})+$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
10	$2 \mathrm{AgNO}_{3}(\mathrm{aq})$	+	$\mathrm{MgCl}_{2}(\mathrm{aq})$	\rightarrow	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$	+	$2 \mathrm{AgCl}(\mathrm{aq})$	

Exercise 6c: Writing equations in symbols from equations in words

In the following examples you will need to convert the names of the materials into formulae and then balance the resulting equation. In some cases more than one experiment is described, and you will need to write more than one equation.

1 Zinc metal reacts with copper sulfate solution to produce solid copper metal and zinc sulfate solution.

2 Solid calcium hydroxide reacts with solid ammonium chloride on heating to produce solid calcium chloride, steam and ammonia gas.

3 When lead(II) nitrate is heated in a dry tube lead(II) oxide, nitrogen dioxide gas and oxygen are produced.

4 Silicon tetrachloride reacts with water to produce solid silicon dioxide and hydrogen chloride gas.

5 When a solution of calcium hydrogen carbonate is heated a precipitate of calcium carbonate is produced together with carbon dioxide gas and more water.

6 When octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ vapour is burnt with excess air in a car engine carbon dioxide and water vapour are produced.

7 All the halogens, apart from fluorine, react with concentrated sodium hydroxide solution to produce a solution of the sodium halide (NaX), the sodium halate $\left(\mathrm{NaXO}_{3}\right)$ and water.

8 The elements of Group 1 of the periodic table all react with water to produce a solution of the hydroxide of the metal and hydrogen gas.

The last two questions in this exercise will need a lot of thought as they involve changes in the oxidation state (charge) of the elements concerned. Before you start to balance the equations check with your teacher that you have the formulae correct.

9 Tin(II) chloride solution reacts with mercury(II) chloride solution to produce a precipitate of mercury (I) chloride and a solution of $\operatorname{tin}(\mathrm{IV})$ chloride. This precipitate of mercury (I) chloride then reacts with further tin(II) chloride solution to produce liquid mercury and more tin(IV) chloride solution.

10 Concentrated sulfuric acid reacts with solid potassium iodide to produce solid potassium hydrogen sulfate, iodine vapour, water and hydrogen sulfide gas.

Section 7: How equations are found by experiment

Although equations are often printed in books for you to learn, you must remember that they were all originally found by someone doing experiments to measure how much of each chemical reacted and how much of each product was formed.
Below are set out some of the methods you could use.

- Direct mass determinations, eg the reaction of magnesium with oxygen.

A known mass of magnesium is heated in a crucible to constant mass and hence the mass of magnesium oxide is found. Supposing 0.12 g of magnesium produce 0.20 g of magnesium oxide. By subtraction, the mass of oxygen combined with the magnesium is 0.080 g .
Each of these masses is then converted to moles and it is found that every 2 moles of magnesium react with 1 mole of oxygen molecules and produce 2 moles of magnesium oxide.
$2 \mathrm{Mg} \quad+\quad \mathrm{O}_{2} \quad \rightarrow \quad 2 \mathrm{MgO}$

- Reacting volumes in solution: usually you have to calculate concentrations of acids or alkalis by reaction with the appropriate standard solution and use the chemical equation for the reaction.

However, you can calculate the ratio of reacting moles from experimental data, in order to construct the equation. To do this you use solutions, whose concentrations you know. You then do a titration in the usual way and use the volumes used in the titration to find the number of moles of each reagent.
These are then used in the equation straight away, just as in the magnesium oxide example above.

- Measurement of gas volumes: the molar volume of a gas is taken as $24 \mathrm{dm}^{3}$ at room temperature and atmospheric pressure (r.t.p.).

Examples

1 In an experiment a solution containing 3.31 g of lead(II) nitrate reacts with a solution containing 1.17 g of sodium chloride to produce 2.78 g of lead(II) chloride solid and leave a solution that contains 1.70 g of sodium nitrate. What is the equation for the reaction?

In this type of question you need to calculate the ratio of the reacting moles and then use these to write out the equation.

$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	NaCl	PbCl_{2}	NaNO_{3}
$\mathrm{M}_{\mathrm{r}}=331$	$\mathrm{M}_{\mathrm{r}}=58.5$	$\mathrm{M}_{\mathrm{r}}=278$	$\mathrm{M}_{\mathrm{r}}=85$

$\therefore \quad 3.31 \mathrm{~g}$ of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	$=(3.31 / 331.2) \mathrm{mol}$	$=0.010 \mathrm{~mol}$
1.17 g of NaCl		$=(1.17 / 58.5) \mathrm{mol}$
2.78 g of PbCl_{2}	$=0.020 \mathrm{~mol}$	
1.70 g of NaNO_{3}		$=(1.78 / 278.2) \mathrm{mol}$
	$=0.010 \mathrm{~mol}$	
		$=0.020 \mathrm{~mol}$

$\therefore \quad 0.01 \mathrm{~mol}$ of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ reacts with 0.02 mol of NaCl to give 0.01 mol of PbCl_{2} and 0.02 mol of NaNO_{3}
ie 1 mol of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ reacts with 2 mol of NaCl to give 1 mol of PbCl_{2} and 2 mol of NaNO_{3}
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NaCl} \quad \rightarrow \quad \mathrm{PbCl}_{2} \quad+\quad 2 \mathrm{NaNO}_{3}$

You do not need to write all of this out each time.

2 When 5.175 g of lead are heated to $300^{\circ} \mathrm{C}$ the lead reacts with the oxygen in the air to produce 5.708 g of an oxide of lead. This is the only product. What is the equation for this reaction? In this type of question you seem to be short of information but in fact you know the mass of oxygen reacting. Remember it is oxygen molecules that are reacting not oxygen atoms.
Mass of oxygen used is $5.708-5.175 \mathrm{~g}=0.533 \mathrm{~g}$

Moles of lead reacting	$=(5.175 / 207.2) \mathrm{mol}$	$=0.025 \mathrm{~mol}$
Moles of oxygen reacting	$=(0.533 / 32) \mathrm{mol}$	$=0.0167 \mathrm{~mol}$

$\therefore 0.025 \mathrm{~mol}$ of Pb react with 0.0167 mol of O_{2} to give product
$\therefore 1.5 \mathrm{~mol}$ of Pb react with 1 mol of O_{2} to give product
$\therefore 3 \mathrm{~mol}$ of Pb react with 2 mol of O_{2} to give product
$3 \mathrm{~Pb} \quad+\quad 2 \mathrm{O}_{2} \quad \rightarrow \quad \mathrm{~Pb}_{3} \mathrm{O}_{4}$

You do not have all the information needed to write the full equation but as you know there is only 1 product and this has 3 lead atoms and 4 oxygen atoms, you can suggest a formula.
$325 \mathrm{~cm}^{3}$ of $2 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid solution react with $50 \mathrm{~cm}^{3}$ of $2 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution to produce sodium sulfate and water. Construct the equation for this reaction.

You will need to look at the start of section 11 before you can follow this question.
$25 \mathrm{~cm}^{3}$ of $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ contain ($25 \times 2 / 1000$) mol of $\mathrm{H}_{2} \mathrm{SO}_{4}=0.050 \mathrm{~mol}$
$50 \mathrm{~cm}^{3}$ of 2 M NaOH contain ($50 \times 2 / 1000$) mol of $\mathrm{NaOH}=0.10 \mathrm{~mol}$
$\therefore 0.05 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ react with 0.10 mol of NaOH to give $\mathrm{Na}_{2} \mathrm{SO}_{4}$ plus $\mathrm{H}_{2} \mathrm{O}$
$\therefore 1$ mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ react with 2 mol of NaOH to give $\mathrm{Na}_{2} \mathrm{SO}_{4}$ plus $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{SO}_{4} \quad+\quad 2 \mathrm{NaOH} \quad \rightarrow \quad \mathrm{Na}_{2} \mathrm{SO}_{4} \quad+\quad 2 \mathrm{H}_{2} \mathrm{O}$
$42 \mathrm{~cm}^{3}$ of nitrogen gas react completely with $6 \mathrm{~cm}^{3}$ of hydrogen gas to produce $4 \mathrm{~cm}^{3}$ of ammonia gas. Use the data to write the equation for this reaction.

$2 \mathrm{~cm}^{3}$ of nitrogen $\quad=(2 / 24000) \mathrm{mol}=8.33 \times 10^{-5} \mathrm{~mol}$
$6 \mathrm{~cm}^{3}$ of hydrogen
$=(6 / 24000) \mathrm{mol}=2.50 \times 10^{-4} \mathrm{~mol}$
$4 \mathrm{~cm}^{3}$ of ammonia $=(4 / 24000) \mathrm{mol}=1.67 \times 10^{-4} \mathrm{~mol}$

| \therefore ratios are $\quad\left(8.33 \times 10^{-5} / 8.33 \times 10^{-5}\right)$ of nitrogen $=1$ |
| ---: | :--- |
| $\left(2.50 \times 10^{-4} / 8.33 \times 10^{-5}\right)$ of hydrogen $=3$ |
| $\left(1.67 \times 10^{-4} / 8.33 \times 10^{-5}\right)$ of ammonia $=2$ |

$\mathrm{N}_{2} \quad+\quad 3 \mathrm{H}_{2} \quad \rightarrow \quad 2 \mathrm{NH}_{3}$

51 g of CaCO 3 reacts with $10 \mathrm{~cm}^{3}$ of $2 \mathrm{M} \mathrm{HNO}_{3}$ to produce 1.64 g of Ca($\left.\mathrm{NO}_{3}\right)_{2}, 240 \mathrm{~cm}^{3}$ of CO_{2} and water.

In practice, the acid will be in water and it is almost impossible to measure the amount of water produced by the reaction.

$\begin{gathered} 1 / 100.1 \mathrm{~mol} \\ \text { of } \mathrm{CaCO}_{3} \end{gathered}$	+	$\begin{aligned} & (10 \times 2) / 1000 \\ & \text { mol of } \mathrm{HNO}_{3} \end{aligned}$	\rightarrow	$\begin{aligned} & 1.64 / 164.1 \mathrm{~mol} \\ & \text { of } \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \end{aligned}$	+	$\begin{aligned} & 240 / 24000 \\ & \text { mol of } \mathrm{CO}_{2} \end{aligned}$		$\mathrm{H}_{2} \mathrm{O}$
$\begin{gathered} 0.01 \mathrm{~mol} \text { of } \\ \mathrm{CaCO}_{3} \end{gathered}$	+	$\begin{gathered} 0.02 \mathrm{~mol} \text { of } \\ \mathrm{HNO}_{3} \end{gathered}$	\rightarrow	0.01 mol of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	+	$\begin{gathered} 0.01 \mathrm{~mol} \text { of } \\ \mathrm{CO}_{2} \end{gathered}$	+	$\mathrm{H}_{2} \mathrm{O}$
CaCO_{3}	+	$2 \mathrm{HNO}_{3}$	\rightarrow	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	+	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$

Exercise 7: Writing chemical equations from experimental data

Use the data below to write the equations for the reactions listed. In some cases you may not be able to calculate the moles of all the materials involved, and you should indicate that you have 'balanced' this part yourself.
In examples involving gases you should assume 1 mole of gas occupies $24000 \mathrm{~cm}^{3}$ at room temperature and pressure.

1 In an experiment a solution containing 6.675 g of aluminium chloride reacted with a solution containing 25.50 g of silver nitrate. 21.52 g of silver chloride was produced together with a solution of 10.65 g of aluminium nitrate, $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$. What is the equation for the reaction taking place?
$2100 \mathrm{~cm}^{3}$ of a solution of potassium chromate(VI), containing $97.05 \mathrm{~g} \mathrm{dm}^{-3}$, reacts with $50 \mathrm{~cm}^{3}$ of a solution, containing $331 \mathrm{~g} \mathrm{dm}^{-3}$ of lead nitrate, to produce 16.15 g of a precipitate of lead(II) chromate and $150 \mathrm{~cm}^{3}$ of a solution of potassium nitrate, which gives 10.1 g of solid when the water is evaporated off from the solution. Write out the equation for the reaction.
$3 \quad 1.133 \mathrm{~g}$ of silver nitrate was heated in an open tube. The silver residue weighed 0.720 g . During the reaction 0.307 g of nitrogen dioxide was also produced. The rest of the mass loss was due to oxygen. Use the data to write out the equation for the reaction.

4 In a titration using methyl orange as an indicator $25.0 \mathrm{~cm}^{3}$ of a solution of 0.1 M sodium hydroxide reacted with $25.0 \mathrm{~cm}^{3}$ of 0.1 M phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, solution. If the experiment is repeated using phenolphthalein in place of the methyl orange as the indicator the volume of the sodium hydroxide used to cause the indicator to change colour is $50.0 \mathrm{~cm}^{3}$. This is because phenolphthalein changes colour when a different number of hydrogen ions in the acid have reacted, and a different salt forms.
i Use the data to calculate the number of moles of sodium hydroxide that react with one mole of phosphoric acid in each case.
ii Suggest the formula of the salt produced in each case.
iii Write out the equations.
iv What volume of the alkali would be needed to produce the salt $\mathrm{Na}_{3} \mathrm{PO}_{4}$?
$550 \mathrm{~cm}^{3}$ of a solution of citric acid, $M_{r}=192$, containing $19.2 \mathrm{~g} \mathrm{dm}^{-3}$ reacted with $50 \mathrm{~cm}^{3}$ of a solution of sodium hydroxide containing $12 \mathrm{~g} \mathrm{dm}^{-3}$. Citric acid can be represented by the formula $H_{x} A$, where x represents the number of hydrogen atoms in the molecule. Use the data above to calculate the number of moles of sodium hydroxide that react with one mole of citric acid and hence find the value of x.

6 When 12.475 g of hydrated copper(II) sulfate, $\mathrm{CuSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$, was heated 7.980 g of anhydrous salt were produced. Use the data to find the value of x and write out the equation for the reaction.

7 When $20 \mathrm{~cm}^{3}$ of ammonia gas is passed over a catalyst with excess oxygen, $20 \mathrm{~cm}^{3}$ of nitrogen monoxide (NO) and $30 \mathrm{~cm}^{3}$ of water vapour are produced. Use this data to write out the equation for the reaction.
$810 \mathrm{~cm}^{3}$ of a hydrocarbon $\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ reacted with $50 \mathrm{~cm}^{3}$ of oxygen gas to produce 30 cm^{3} of carbon dioxide and $40 \mathrm{~cm}^{3}$ of water vapour. Use the data to calculate the reacting moles in the equation and suggest values for a and b .

9 When 8.4 g of sodium hydrogen carbonate are heated 5.30 g of solid residue and $1200 \mathrm{~cm}^{3}$ of carbon dioxide are produced and 0.900 g of water are evolved. Show that this data is consistent with the following equation.

$$
2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\quad \mathrm{H}_{2} \mathrm{O}
$$

10 When 13.9 g of $\mathrm{FeSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$ is heated 4 g of solid iron (III) oxide is produced, together with the loss of 1.6 g of sulfur dioxide and 2.0 g of sulfur trioxide. The rest of the mass loss being due to the water of crystallization being lost. Use the data to write out the full equation for the action of heat.

Section 8: Amounts of substances

Equations can also tell us how much of a chemical is reacting or is produced. The equation in Section 7 tells us that 2 moles of (solid) magnesium atoms react with 1 mole of (gaseous) oxygen molecules to produce 2 moles of (solid) magnesium oxide molecules.
We know that the relative atomic mass of magnesium is 24 , and that of oxygen is 16 (see periodic table in Section 12). And from the equation we balanced in Section 6 we can suggest that 48 g of magnesium react with 32 g of oxygen (because an oxygen molecule contains two atoms) to give 80 g of magnesium oxide.
Since we know the ratio of reacting masses (or volumes in the case of gases) we can calculate any reacting quantities based on the equation.

Example 1

a What mass of magnesium oxide would be produced from 16 g of magnesium in the reaction between magnesium and oxygen?
i Write out the full balanced equation

$$
2 \mathrm{Mg}(\mathrm{~s}) \quad+\mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{MgO}(\mathrm{~s})
$$

ii Read the equation in terms of moles 2 moles of magnesium reacts to give 2 moles of magnesium oxide
iii Convert the moles to masses using the M_{r} values
$\therefore(2 \times 24.3 \mathrm{~g})$ of magnesium gives $2 \times(24.3+16)=80.6 \mathrm{~g}$ of Magnesium oxide
$\therefore \quad 16 \mathrm{~g}$ of magnesium gives

$$
\frac{80.6 \times 16}{2 \times 24.3}=26.5 \mathrm{~g} \text { of Magnesium oxide }
$$

b What volume of oxygen would react with 16 g of magnesium in the above reaction? In this case the oxygen is a gas so the volume of each mole is $24000 \mathrm{~cm}^{3}$ at room temperature and pressure and you do not have to worry about the molecular mass of the gas.
From the equation:
2 moles of Mg react with 1 mole of O_{2}
$\therefore 2 \times 24.3 \mathrm{~g}$ of Mg react with $1 \times 24000 \mathrm{~cm}^{3}$ of $\mathrm{O}_{2}(\mathrm{~g})$
$\therefore 16 \mathrm{~g}$ of Mg react with $\quad \frac{1 \times 24000 \times 16}{2 \times 24.3}=7901 \mathrm{~cm}^{3}$ of oxygen

Example 2

What mass of lead(II) sulfate would be produced by the action of excess dilute sulfuric acid on 10 g of lead nitrate dissolved in water?

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \quad+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{PbSO}_{4}(\mathrm{~s}) \quad+\quad 2 \mathrm{HNO}_{3}(\mathrm{aq})
$$

$\therefore 1$ mole of lead nitrate gives 1 mole of lead sulfate
$\therefore 331.2 \mathrm{~g}$ of lead nitrate gives 303.2 g of lead sulfate
$\therefore 10 \mathrm{~g}$ of lead nitrate gives $\frac{303.2 \times 10 \mathrm{~g} \text { of lead sulfate }}{331.2}=9.15 \mathrm{~g}$ of lead sulfate

Example 3

What is the total volume of gas produced by the action of heat on 1 g of silver nitrate?
$2 \mathrm{AgNO}_{3}(\mathrm{~s}) \quad \rightarrow 2 \mathrm{Ag}(\mathrm{s}) \quad+\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad+\quad \mathrm{O}_{2}(\mathrm{~g})$

2 moles of silver nitrate give 2 moles of nitrogen dioxide gas plus 1 mole of oxygen gas $=3$ moles of gas
$\therefore 2 \times 169.9 \mathrm{~g}$ of silver nitrate give $3 \times 24000 \mathrm{~cm}^{3}$ of gas
$\therefore 1 \mathrm{~g}$ of silver nitrate gives $\quad \frac{3 \times 24000 \mathrm{~cm}^{3} \times 1 \mathrm{~g} \text { of gas }}{2 \times 169.9}=211.9 \mathrm{~cm}^{3}$ of gas

Example 4

When excess carbon dioxide is passed into sodium hydroxide solution, sodium carbonate solution is formed. This can be crystallised out as $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$. What mass of crystals would be produced from 5 g of sodium hydroxide in excess water?
Care. You need the water expressed as moles in the equation.
$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+9 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
$\therefore 2$ moles of sodium hydroxide give 1 mole of the crystals of sodium carbonate
$\therefore 2 \mathrm{x} 40 \mathrm{~g}$ of sodium hydroxide give 286 g of crystals
$\therefore 5 \mathrm{~g}$ of sodium hydroxide gives $\frac{286 \times 5}{2 \times 40}=17.88 \mathrm{~g}$ of crystals

Example 5

What mass of ethanoic acid and what mass of ethanol would be needed to produce 100 g of ethyl ethanoate assuming the reaction went to completion?

Care! In this question you know how much you want to get but are asked how much you will need to start with. In these cases you must read the equation from the other end, ie 1 mole of the ethyl ethanoate is produced from 1 mole of acid and 1 mole of alcohol.

$\therefore 88 \mathrm{~g}$ of ethyl ethanoate are produced from 60 g of ethanoic acid and 46 g of ethanol
$\therefore 100 \mathrm{~g}$ of ethyl ethanoate are produced from
$\frac{60 \mathrm{~g} \times 100 \mathrm{~g}}{88 \mathrm{~g}}=68.2 \mathrm{~g}$ of ethanoic acid
and $\frac{46 \mathrm{~g} \times 100 \mathrm{~g}}{88 \mathrm{~g}}=52.3 \mathrm{~g}$ of ethanoic acid

Exercise 8: Calculations of products/reactants based on equations

In this exercise the equations you need are given in the question, unless they were included in Exercise 6a.

1 What mass of barium sulfate would be produced from 10 g of barium chloride in the following reaction?
$\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+\quad 2 \mathrm{HCl}$
2 What mass of potassium chloride would be produced from 20 g of potassium carbonate?

3 What masses of ethanol and ethanoic acid would need to react together to give 1 g of ethyl ethanoate?

4 What mass of iron(III) oxide would need to be reduced to produce 100 tonnes of iron in a blast furnace?
$5 \quad$ What mass of silver nitrate as a solution in water would need to be added to 5 g of sodium chloride to ensure complete precipitation of the chloride?

$$
\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s}) \quad+\quad \mathrm{NaNO}_{3}(\mathrm{aq})
$$

6 A solution of copper sulfate reacts with sodium hydroxide solution to produce a precipitate of copper hydroxide according to the following equation:

$$
\mathrm{CuSO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

What mass of sodium hydroxide would be needed to convert 15.96 g of copper sulfate to copper hydroxide and what mass of copper hydroxide would be produced?

7 What volume of ammonia gas would be needed to produce 40 g of ammonium nitrate in the following reaction?

$$
\mathrm{NH}_{3}(\mathrm{~g}) \quad+\quad \mathrm{HNO}_{3}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})
$$

$8 \quad$ In the reaction between calcium carbonate and nitric acid what mass of calcium nitrate and what volume of carbon dioxide would be produced from 33.3 g of calcium carbonate?
$9 \quad$ What would be the total volume of gas produced by the action of heat on 33.12 g of lead(II) nitrate?

10 Magnesium reacts with sulfuric acid to produce a solution of magnesium sulfate. If this is allowed to crystallise out the solid produced has the formula $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$.

Write out the equation for this reaction and calculate the mass of magnesium sulfate heptahydrate that could be produced from 4 g of magnesium.

11 Copper(II) oxide reacts with sulfuric acid to produce copper(II) sulfate. If this is allowed to crystallise the formula of the crystals is $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$.
What mass of copper oxide would be needed to produce 100 g of crystals?

12 Sulfur dioxide can be removed from the waste gases of a power station by passing it through a slurry of calcium hydroxide. The equation for this reaction is:

$$
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

What mass of calcium hydroxide would be needed to deal with $1000 \mathrm{dm}^{3}$ of sulfur dioxide?

13 In a fermentation reaction glucose is converted to alcohol and carbon dioxide according to the following equation:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad \rightarrow \quad 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \quad+\quad 2 \mathrm{CO}_{2}
$$

What mass of alcohol and what volume of carbon dioxide would be produced from 10 g of glucose?

14 In the following reactions calculate the mass of precipitate formed from 20 g of the metal salt in each case.

(i)	$\mathrm{ZnSO}_{4}(\mathrm{aq})$	+2 NaOH	\rightarrow	$\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})$	+	$\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
(ii)	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})$	+2 NaOH	\rightarrow	$2 \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$	+	$3 \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
(iii)	$\mathrm{MgSO}_{4}(\mathrm{aq})$	+2 NaOH	\rightarrow	$\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$	+	$\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$

15 What volume of hydrogen would be produced by 1 g of calcium in its reaction with water?

16 What mass of magnesium would be needed to produce $100 \mathrm{~cm}^{3}$ of hydrogen?

17 Chlorine reacts with sodium hydroxide as follows:
$\mathrm{Cl}_{2}(\mathrm{~g})+6 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 5 \mathrm{NaCl}(\mathrm{aq})+\mathrm{NaClO}_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
What mass of sodium chloride and what mass of sodium (V) chlorate would be produced from $240 \mathrm{~cm}^{3}$ of chlorine gas?

18 When nitrogen reacts with hydrogen in the Haber process only 17% of the nitrogen is converted to ammonia. What volume of nitrogen and what volume of hydrogen would be needed to produce 1 tonne of ammonia? (1 tonne $=1 \times 10^{6} \mathrm{~g}$)

19 Nitric acid is produced by the following series of reactions:

		$4 \mathrm{NH}_{3}$	+	$5 \mathrm{O}_{2}$	\rightarrow	4NO	+	$3 \mathrm{H}_{2} \mathrm{O}$
		4NO	+	O_{2}	\rightarrow	$4 \mathrm{NO}_{2}$		
$4 \mathrm{NO}_{2}$	+	O_{2}	+	$2 \mathrm{H}_{2} \mathrm{O}$	\rightarrow	$4 \mathrm{HNO}_{3}$		

What mass of nitric acid would be produced from 17 tonnes of ammonia and what volume of oxygen would be needed in the reaction?

20 Hardness in water is caused by dissolved calcium compounds. When heated some of these break down and deposit calcium carbonate as follows:
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \rightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
This builds up as 'fur' on the inside of boilers. It can be removed by reaction with hydrochloric acid.
What mass of calcium carbonate would be produced from $10000 \mathrm{dm}^{3}$ of water containing 0.356 g of calcium hydrogen carbonate per dm^{3} of water and what volume of $10 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid solution would be needed to remove the solid calcium carbonate from the inside of the boiler?

Section 9: Reactions involving gases

Whenever gases are involved in a reaction you need to remember that they have both mass and volume and that 1 mole of any gas has the volume $24000 \mathrm{~cm}^{3}$, at room temperature and 1 atmosphere pressure. (See Section 4 for more details)
This means:
2 g of hydrogen, H_{2}, has a volume of $24000 \mathrm{~cm}^{3}$
32 g of oxygen, O_{2}, has a volume of $24000 \mathrm{~cm}^{3}$
80.9 g of hydrogen bromide, HBr , has a volume of $24000 \mathrm{~cm}^{3}$.

This makes calculations involving gas volumes much easier than you might expect.
Consider the following reaction:

This says:
2 moles of $\mathrm{NO}(\mathrm{g})$ react with 1 mole of $\mathrm{O}_{2}(\mathrm{~g})$ to give 2 moles of $\mathrm{NO}_{2}(\mathrm{~g})$
$\therefore \quad(2 \times 24000) \mathrm{cm}^{3}$ of NO react with $(1 \times 24000) \mathrm{cm}^{3}$ of oxygen to give $(2 \times 24000) \mathrm{cm}^{3}$ of NO_{2}
$2 \mathrm{~cm}^{3}$ of NO react with $1 \mathrm{~cm}^{3}$ of oxygen to give $2 \mathrm{~cm}^{3}$ of NO_{2}
ie, for gases only the reacting volume ratios are the same as the reacting mole ratios in the equation.

Example 1

What volume of sulfur trioxide would be produced by the complete reaction of $100 \mathrm{~cm}^{3}$ of sulfur dioxide with oxygen? What volume of oxygen would be needed to just react with the sulfur dioxide?

	$2 \mathrm{SO}_{2}(\mathrm{~g})$	+	$\mathrm{O}_{2}(\mathrm{~g})$	\rightarrow	$2 \mathrm{SO}_{3}(\mathrm{~g})$
Ratios	2		1		2
ie	1		$1 / 2$		1
	$100 \mathrm{~cm}^{3}$		$50 \mathrm{~cm}^{3}$		$100 \mathrm{~cm}^{3}$

Thus, $100 \mathrm{~cm}^{3}$ of sulfur dioxide will need $50 \mathrm{~cm}^{3}$ of oxygen and will produce $100 \mathrm{~cm}^{3}$ of sulfur dioxide.

Example 2

What would be the composition of the final product in Example 1 if $100 \mathrm{~cm}^{3}$ of oxygen had been used rather than $50 \mathrm{~cm}^{3}$.
Since $100 \mathrm{~cm}^{3}$ of the sulfur dioxide needs only $50 \mathrm{~cm}^{3}$ of oxygen there must be $50 \mathrm{~cm}^{3}$ of unused oxygen. Thus, the final volume is:
$100 \mathrm{~cm}^{3}$ of sulfur dioxide plus $50 \mathrm{~cm}^{3}$ of excess oxygen $=150 \mathrm{~cm}^{3}$

Example 3

What volume of ammonia would be produced if $10 \mathrm{~cm}^{3}$ of nitrogen was reacted with $20 \mathrm{~cm}^{3}$ of hydrogen?

$$
\mathrm{N}_{2}(\mathrm{~g}) \quad+\quad 3 \mathrm{H}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

You need to think before you start this question. The reacting volumes given in the question are not the same as those in the reaction. You must have an excess of one of the gases.
From the equation
$10 \mathrm{~cm}^{3}$ of nitrogen needs $30 \mathrm{~cm}^{3}$ of hydrogen. You only have $20 \mathrm{~cm}^{3}$ of hydrogen so the nitrogen is in excess.
In this case you will need to use the hydrogen volume in the calculation.

	$\mathrm{N}_{2}(\mathrm{~g})$	$3 \mathrm{H}_{2}(\mathrm{~g})$	\rightarrow	$2 \mathrm{NH}_{3}(\mathrm{~g})$
Ratios	1	3		2
	1/3	1		2/3
	$1 / 3 \times 20$	20		$2 / 3 \times 20$
	$6.67 \mathrm{~cm}^{3}$	$20 \mathrm{~cm}^{3}$		$13.33 \mathrm{~cm}^{3}$

Thus, $20 \mathrm{~cm}^{3}$ of hydrogen will react to give $13.33 \mathrm{~cm}^{3}$ of ammonia and there will be $3.33 \mathrm{~cm}^{3}$ of hydrogen left over.

Exercise 9: Calculations based on equations involving only gases

Section a

In Section a, assume that you have $10 \mathrm{~cm}^{3}$ of the first named reactant and then calculate the volumes of all the gases involved in the equation. In these examples the reactions are being carried out at above $100^{\circ} \mathrm{C}$ and you should assume the water is present as a gas and therefore has a volume.

1	CH_{4}	+	$2 \mathrm{O}_{2}$	\rightarrow	CO_{2}	+	$2 \mathrm{H}_{2} \mathrm{O}$
2	$\mathrm{C}_{2} \mathrm{H}_{4}$	+	$3 \mathrm{O}_{2}$	\rightarrow	$2 \mathrm{CO}_{2}$	+	$2 \mathrm{H}_{2} \mathrm{O}$
3	$2 \mathrm{C}_{2} \mathrm{H}_{2}$	+	$5 \mathrm{O}_{2}$	\rightarrow	$4 \mathrm{CO}_{2}$	+	$2 \mathrm{H}_{2} \mathrm{O}$
4	$2 \mathrm{C}_{8} \mathrm{H}_{18}$	+	$25 \mathrm{O}_{2}$	\rightarrow	$16 \mathrm{CO}_{2}$	+	$18 \mathrm{H}_{2} \mathrm{O}$
5	N_{2}	+	$3 \mathrm{H}_{2}$	\rightarrow	$2 \mathrm{NH}_{3}$		

Section b

In Section b, you need to find the total volume of gas produced at room temperature and pressure. You should ignore the volume of water produced as this will have condensed as a liquid. Be careful in some cases, as there is an excess of one of the reactants.

1 What volume of oxygen would be needed to convert $1000 \mathrm{~cm}^{3}$ of nitrogen monoxide, NO , to nitrogen dioxide, NO_{2} ? (Assume all volumes are measured the same temperature and pressure.)

2 In the production of sulfuric acid, sulfur dioxide is converted to sulfur trioxide by reaction with oxygen in the air. What volume of air (assume 20\% of the air is oxygen) would be needed to produce $150 \mathrm{~cm}^{3}$ of sulfur trioxide? Assume complete conversion of sulfur dioxide to sulfur trioxide.

3 The equation for the oxidation of ammonia to nitrogen monoxide is:
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
What volume of ammonia would be required to produce $2500 \mathrm{~cm}^{3}$ of nitrogen monoxide and what volume of air would be used in the conversion? Again assume that air is 20% oxygen by volume.

4 What volume of oxygen at room temperature and pressure would be needed to completely burn 1 mole of butane?

5 What volume of hydrogen at room temperature and pressure would be needed to convert 1 mole of ethene, $\mathrm{C}_{2} \mathrm{H}_{4}$, to ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$?

6 What is the final volume of gas produced at room temperature when $10 \mathrm{~cm}^{3}$ of methane is burned with $30 \mathrm{~cm}^{3}$ of oxygen?

Section 10: lons and ionic equations

Ionic theory

Many of the chemicals you will use at GCE Advanced Level are ionic, that is the chemical bonds which hold the atoms together are ionic bonds. When you melt these compounds the ions are free to move and this gives them special properties. Often, but not always, these chemicals are soluble in water and when they dissolve the ions separate to produce a solution containing positive and negative ions.

A few covalent substances also form ions when they dissolve in water. Some of these are extremely important for example hydrogen chloride and sulfuric acid.

Structures of ionic compounds

During your course you will study bonding and structure, and some of the most important ideas are set out below.

- Ions are atoms or groups of atoms, which have a positive or negative electric charge.
- Positive ions are called cations (pronounced cat-ions) and negative ions are called anions (pronounced an-ions).
- Positive ions attract the negative ions all around them and are firmly held in a rigid lattice. This is what makes ionic compounds solids.
- When an ionic compound is solid it is crystalline, but when it melts or is dissolved in water the ions become free and can move around.
- Ions have completely different properties from the atoms found in them. For example chlorine is an extremely poisonous gas, but chloride ions are found in sodium chloride, which is essential to human life.

Ionic equations and spectator ions

For ionic chemicals it is the ions which react, not the molecules. For instance, copper(II) sulfate is usually written as CuSO_{4} but it is more often the ion Cu^{2+} which reacts. When you write out an ionic equation you should include only the ions which actually take part in the reaction.

Let us look at a molecular equation and see how it may be converted into an ionic equation. For example, look at the reaction between iron (II) sulfate solution and aqueous sodium hydroxide.

$$
\mathrm{FeSO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s}) \quad+\quad \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

In water, the iron (II) sulfate and the sodium hydroxide are in the form of freely moving ions. When the two solutions are mixed together, we see a green precipitate of iron (II) hydroxide solid. Remaining in solution will be a mixture of sodium ions and sulfate ions.

$$
\mathrm{Fe}^{2+}(\mathrm{aq}) \quad+\quad 2 \mathrm{OH}^{-}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})
$$

Also, when silver nitrate solution reacts with sodium chloride solution the changes do not involve the nitrate ion from the silver nitrate or the sodium ion from the sodium chloride. These are referred to as 'spectator ions'. The equation for this reaction can be written as:

$$
\mathrm{Ag}^{+}(\mathrm{aq}) \quad+\quad \mathrm{Cl}^{-}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{AgCl}(\mathrm{~s})
$$

This equation represents the reaction between any aqueous solution containing silver ions and any aqueous solution containing chloride ions. This is the equation for the test for a chloride ion in solution.

You can work out an ionic equation as follows, using the example of the reaction of iron (II) sulfate solution with excess sodium hydroxide solution.

1 Write down the balanced molecular equation.

$$
\mathrm{FeSO}_{4}(\mathrm{aq}) \quad+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s}) \quad+\quad \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

2 Convert those chemicals that are ions in solution into their ions.

$$
\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})
$$

3 Cross out those ions that appear on both sides of the equation as they have not changed during the reaction. They started and finished in the solution. Give the ionic equation:

$$
\mathrm{Fe}^{2+}(\mathrm{aq}) \quad+\quad 2 \mathrm{OH}^{-}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})
$$

Check that the atoms and the charges balance.

Exercise 10: Ionic equations

In Questions 1-5 you need to balance the equations, in Questions 6-10 you need to complete the equation and then balance it. For Questions 1-17 you need to write the full, balanced ionic equation. Questions 18-20 involve more complex ions and again just need to balance the equation.
$1 \mathrm{~Pb}^{2+}(\mathrm{aq}) \quad+\mathrm{OH}^{-}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})$
$2 \mathrm{Al}^{3+}(\mathrm{aq}) \quad+\quad \mathrm{OH}^{-}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$
$3 \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{AlO}_{2}{ }^{2-}(\mathrm{aq}) \quad+\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$4 \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{ClO}_{3}{ }^{3-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\quad+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$5 \quad \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{~s}) \quad \rightarrow \quad \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq}) \quad+\quad 21^{-}(\mathrm{aq})$
$6 \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow$
$7 \quad \mathrm{CO}_{3}{ }^{2-}(\mathrm{s}) \quad+\quad \mathrm{H}^{+}(\mathrm{aq}) \quad \rightarrow$
$8 \quad \mathrm{Zn}(\mathrm{s}) \quad+\quad \mathrm{H}^{+}(\mathrm{aq}) \quad \rightarrow$
$9 \mathrm{Zn}(\mathrm{s}) \quad+\quad \mathrm{Pb}^{2+}(\mathrm{aq}) \quad \rightarrow$
$10 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \rightarrow$

11 Write out an ionic equation for the reaction of magnesium with sulfuric acid.

12 Write out an ionic equation for the reaction of sodium carbonate solution with nitric acid.

13 Write out an ionic equation for the reaction of copper oxide with hydrochloric acid.

14 Write out an ionic equation for the reaction of barium chloride solution with sodium sulfate solution.

15 Write out an ionic equation for the reaction of silver nitrate solution with potassium chloride solution.

16 Write out an ionic equation for the reaction of zinc with silver nitrate solution.

17 Write out ionic equations for the reactions of sodium hydroxide and potassium hydroxide with hydrochloric acid.

18 Write out ionic equations for the reactions of sodium hydroxide and potassium hydroxide with nitric acid.

19 Write out ionic equations for the reactions of sodium hydroxide and potassium hydroxide with sulfuric acid.

20 What do you notice about the answers to Questions 17, 18 and 19?

Section 11: Calculations involving chemicals in solution

Experiments measuring concentrations of chemicals in solution are often referred to as volumetric analysis. The name should not worry you, the basis of the calculations is the same as all the rest, ie moles and equations.
Many reactions take place in solutions of known concentration.
Concentration in solution is generally measured as moles per $1000 \mathrm{~cm}^{3}$ of solution. For example, sodium chloride may be labelled as 1 M NaCl . This means that each $1000 \mathrm{~cm}^{3}$ of the solution contains 1 mole of $\mathrm{NaCl}(58.5 \mathrm{~g})$, or its concentration is $1 \mathrm{~mol} \mathrm{dm}^{-3}$.
It does not mean that 58.5 g of NaCl have been added to $1000 \mathrm{~cm}^{3}$ of water as the volume of the mixture may no longer be $1000 \mathrm{~cm}^{3}$.
The solution will have been made up by measuring out 58.5 g of the solid, dissolving it in about $500 \mathrm{~cm}^{3}$ of water and then adding more water to make the total volume of the mixture up to $1000 \mathrm{~cm}^{3}$. ($1 \mathrm{dm}^{3}$)
Concentration in $\mathrm{mol} \mathrm{dm}^{-3}$ is called molarity.

$$
\text { molarity }=\frac{\text { concentration ingrams per } 1000 \mathrm{~cm}^{3}}{M_{r} \text { for the material dissolved }}
$$

$$
\text { number of moles of material in a given volume }=\frac{\text { molarity } \times \text { volume }\left(\mathrm{cm}^{3}\right)}{1000}
$$

mass of material in a given volume of solution $=\frac{\text { molarity } \times \text { volume }\left(\mathrm{cm}^{3}\right) \times M_{r}}{1000}$

In reactions in solution it is often more convenient to use molarity (number of $\mathrm{mol} \mathrm{dm}^{-3}$) rather than $\mathrm{g} \mathrm{dm}^{-3}$.

Method

To carry out these calculations, you need to calculate the actual amounts of materials in the volumes involved.

Example

$25 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ react with $50 \mathrm{~cm}^{3}$ of a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$. What is the molarity of the $\mathrm{H}_{2} \mathrm{SO}_{4}$?

$$
2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\quad 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$\therefore 2 \mathrm{~mol}$ of NaOH react with 1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
In this case you know the concentration of the sodium hydroxide so
$\therefore 1 \mathrm{~mol}$ of NaOH reacts with 0.5 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
always put the reactant you know as ' 1 mol'.
In this reaction you have used $25 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$

$$
\begin{aligned}
& =\frac{25 \times 0.10}{1000} \mathrm{~mol} \mathrm{of} \mathrm{NaOH} \\
& =2.5 \times 10^{-3} \mathrm{~mol}
\end{aligned}
$$

This will react with $0.5 \times 2.5 \times 10^{-3}$ moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=1.25 \times 10^{-3}$ moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\therefore 1.25 \times 10^{-3}$ moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will be found in $50 \mathrm{~cm}^{3}$ of the solution.
\therefore In $1000 \mathrm{~cm}^{3}$ of the acid the same solution there will be

$$
\begin{aligned}
& =\frac{1000 \times\left(1.25 \times 10^{-3}\right)}{50} \text { moles of } \mathrm{H}_{2} \mathrm{SO}_{4} \\
& =0.0250 \text { moles }
\end{aligned}
$$

\therefore The concentration of the sulfuric acid is $0.025 \mathrm{~mol} \mathrm{dm}^{-3}$.

Exercise 11a: Calculations based on concentrations in solution

Calculate the number of moles of the underlined species in the given volume of solution.
$125 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \underline{\mathrm{HCl}}$
$250 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \underline{\mathrm{HCl}}$
$3 \quad 250 \mathrm{~cm}^{3}$ of $0.25 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
$4 \quad 500 \mathrm{~cm}^{3}$ of $0.01 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
$5 \quad 25 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \underline{\mathrm{NaOH}}$
$650 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \underline{\mathrm{KOH}}$
$7 \quad 50 \mathrm{~cm}^{3}$ of $0.25 \mathrm{~mol} \mathrm{dm}^{-3} \underline{\mathrm{HNO}}_{\underline{3}}$
$8 \quad 100 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \underline{\mathrm{H}}_{2} \underline{\mathrm{SO}}_{4}$
$9 \quad 25 \mathrm{~cm}^{3}$ of $0.05 \mathrm{~mol} \mathrm{dm}^{-3}{\underline{\mathrm{KMnO}_{4}}}^{4}$
$10 \quad 25 \mathrm{~cm}^{3}$ of $0.2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{FeSO}_{4}$

Calculate the mass of material in the given volume of solution.
$1125 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
$1250 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}$
$13 \quad 100 \mathrm{~cm}^{3}$ of $0.25 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{NO}_{3}$
$14 \quad 100 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{AgNO}_{3}$
$1525 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{BaCl}_{2}$
$1650 \mathrm{~cm}^{3}$ of $0.2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$
$17 \quad 20 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$
$1850 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~K}_{2} \mathrm{CrO}_{4}$
$1925 \mathrm{~cm}^{3}$ of $0.02 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KMnO}_{4}$
$20 \quad 25 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$

What is the concentration in moles dm^{-3} of the following?
213.65 g of HCl in $1000 \mathrm{~cm}^{3}$ of solution
$22 \quad 3.65 \mathrm{~g}$ of HCl in $100 \mathrm{~cm}^{3}$ of solution
$23 \quad 6.624 \mathrm{~g}$ of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ in $250 \mathrm{~cm}^{3}$ of solution
$24 \quad 1.00 \mathrm{~g}$ of NaOH in $250 \mathrm{~cm}^{3}$ of solution
$25 \quad 1.962 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $250 \mathrm{~cm}^{3}$ of solution
$26 \quad 1.58 \mathrm{~g}$ of KMnO_{4} in $250 \mathrm{~cm}^{3}$ of solution
$27 \quad 25.0 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ in $250 \mathrm{~cm}^{3}$ of solution
$28 \quad 25.0 \mathrm{~g}$ of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ in $250 \mathrm{~cm}^{3}$ of solution
$29 \quad 4.80 \mathrm{~g}$ of $(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in $250 \mathrm{~cm}^{3}$ of solution
$30 \quad 10.0 \mathrm{~g}$ of $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in $250 \mathrm{~cm}^{3}$ of solution
$31240 \mathrm{~cm}^{3}$ of $\mathrm{NH}_{3}(\mathrm{~g})$ dissolved in $1000 \mathrm{~cm}^{3}$ of solution
$32480 \mathrm{~cm}^{3}$ of $\mathrm{HCl}(\mathrm{g})$ dissolved in $100 \mathrm{~cm}^{3}$ of solution
$33 \quad 120 \mathrm{~cm}^{3}$ of $\mathrm{SO}_{2}(\mathrm{~g})$ dissolved in $250 \mathrm{~cm}^{3}$ of solution
$34 \quad 24 \mathrm{~cm}^{3}$ of $\mathrm{HCl}(\mathrm{g})$ dissolved in $200 \mathrm{~cm}^{3}$ of solution
$35 \quad 100 \mathrm{~cm}^{3}$ of $\mathrm{NH}_{3}(\mathrm{~g})$ dissolved in $10 \mathrm{~cm}^{3}$ of solution

Exercise 11b: Simple volumetric calculations

In this series of calculations you should start by:

- writing out the equation for the reaction taking place
- calculating the number of moles in the solution whose molarity is given
- calculating the number of moles of the substance in the first named solution using the reacting ratio in the chemical equation
- finally, calculating the number of moles in $1 \mathrm{dm}^{3}$ (the molarity).

In some cases you will need to calculate the molarity of the solutions before you start the main part of the question.
For Questions 1-10 calculate the molarity of the first named solution from the data below.

1	$25 \mathrm{~cm}^{3}$ of sodium hydroxide	reacts with	$21.0 \mathrm{~cm}^{3}$ of $0.2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
2	$25 \mathrm{~cm}^{3}$ of sodium hydroxide	reacts with	$17.0 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$
3	$20 \mathrm{~cm}^{3}$ of hydrochloric acid	reacts with	$23.6 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$
4	$20 \mathrm{~cm}^{3}$ of hydrochloric acid	reacts with	$20.0 \mathrm{~cm}^{3}$ of a solution of NaOH containing $40 \mathrm{~g} \mathrm{dm}^{-3}$ of NaOH
5	$25 \mathrm{~cm}^{3}$ of nitric acid	reacts with	$15 \mathrm{~cm}^{3}$ of a solution of $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{NH}_{4} \mathrm{OH}$
6	$25 \mathrm{~cm}^{3}$ of a solution of barium chloride	reacts with	$20 \mathrm{~cm}^{3}$ of a solution of 0.05 mol dm^{-3} sulfuric acid
7	$25 \mathrm{~cm}^{3}$ of a solution of NaCl	reacts with	$10 \mathrm{~cm}^{3}$ of a $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$ silver nitrate
8	$10 \mathrm{~cm}^{3}$ of a solution of AlCl_{3}	reacts with	$30 \mathrm{~cm}^{3}$ of $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ silver nitrate
9	$25 \mathrm{~cm}^{3}$ of $\mathrm{H}_{\mathrm{x}} \mathrm{A}$	reacts with	$\begin{aligned} & 25 \mathrm{~cm}^{3} \text { of } 0.2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH} \text { to } \\ & \text { give } \mathrm{Na}_{2} \mathrm{~A} \end{aligned}$

$1025 \mathrm{~cm}^{3}$ of $\mathrm{H}_{3} \mathrm{PO}_{4} \quad$ reacts with $100 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ to give $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
$1125 \mathrm{~cm}^{3}$ of a solution of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ reacts with $50 \mathrm{~cm}^{3}$ of a solution of hydrochloric acid. What is the molarity of the acid?
$1225 \mathrm{~cm}^{3}$ of a solution of $0.2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}$ reacts with $30 \mathrm{~cm}^{3}$ of a solution of nitric acid. What is the concentration of the acid in moles dm^{-3}

13 In a titration, $25 \mathrm{~cm}^{3}$ of ammonia solution react with $33.30 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$. What is the concentration of the ammonia solution in $\mathrm{g} \mathrm{dm}^{-3}$?

14 In the reaction between iron(II) ammonium sulfate and potassium manganate (VII)solution $25 \mathrm{~cm}^{3}$ of the Fe^{2+} solution reacted with $24.8 \mathrm{~cm}^{3}$ of $0.020 \mathrm{~mol} \mathrm{dm}^{-3}$ KMnO_{4} solution. What is the molarity of the iron(II) ammonium sulfate solution?
The ionic equation for the reaction is
$5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 5 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$15 \quad 10 \mathrm{~cm}^{3}$ of a solution of NaCl reacts with $15 \mathrm{~cm}^{3}$ of $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$ silver nitrate solution. What is the concentration of the NaCl solution in $\mathrm{g} \mathrm{dm}^{-3}$?
$1625 \mathrm{~cm}^{3}$ of a solution of an acid $H_{x} A$ containing $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ of the acid in each 1000 cm^{3} of solution reacts with $75 \mathrm{~cm}^{3}$ of a solution of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$. What is the value of x ?
$1725 \mathrm{~cm}^{3}$ of a solution of sodium carbonate reacts with $10 \mathrm{~cm}^{3}$ of a $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$. What is the concentration of the sodium carbonate?

18 What volume of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ will be needed to react with $25 \mathrm{~cm}^{3}$ of 0.2 mol $\mathrm{dm}^{-3} \mathrm{NaOH}$?

19 What volume of $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$ will be needed to react with $25 \mathrm{~cm}^{3}$ of 0.2 mol $\mathrm{dm}^{-3} \mathrm{NaOH}$?

20 What volume of $0.02 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KMnO}_{4}$ will be needed to react with $25 \mathrm{~cm}^{3}$ of 0.1 mol $\mathrm{dm}^{-3} \mathrm{FeSO}_{4}$ solution?
See Question 14 for the equation for this reaction.

For last five questions you will need to use the skills you have learnt in this section, together with those from other sections as appropriate.

21 What weight of silver chloride will be produced if $25 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ silver nitrate is added to excess sodium chloride solution?

22 What weight of calcium carbonate will dissolve in $100 \mathrm{~cm}^{3}$ of $0.2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$?

23 What volume of carbon dioxide will be produced if $100 \mathrm{~cm}^{3}$ of $0.2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HNO}_{3}$ is added to excess sodium carbonate solution?

24 What weight of magnesium will dissolve in $10 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ and what volume of hydrogen will be produced?

25 What volume of ammonia gas will be produced in the following reaction if $50 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide is boiled with $50 \mathrm{~cm}^{3}$ of $0.4 \mathrm{~mol} \mathrm{dm}^{-3}$ ammonium chloride solution? (Care: one of these is in excess.)
$\mathrm{NaOH}(\mathrm{aq})+\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq}) \quad+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NH}_{3}(\mathrm{~g})$

Section 12：The periodic table of the elements

$$
L
$$

$$
9
$$ $\angle O L$

wnuчoq
Cg
［ 792$]$ 801
wn！ssey
SH

$[\angle L Z]$ | で06し | で98し |
| :---: | :---: |
| $\downarrow \succ$ | $\varepsilon \downarrow$ | 궁

 き －

Section 13: Answers

Exercise 1

$\mathbf{1}$	18	21	111.1	41	159.6
2	44	22	164.1	42	136.4
3	17	23	74.1	43	169.9
4	46	24	136.2	44	53.5
5	28	25	208.3	45	132.1
6	64.1	26	133.5	46	116.9
7	80.1	27	213	47	122.6
8	80.9	28	342.3	48	166.0
9	98.1	29	151.8	49	74.5
10	63	30	126.8	50	69.0
11	58.5	31	162.3	51	249.6
12	85	32	399.9	52	277.9
13	106	33	223.2	53	964
14	40	34	239.2	54	248.2
15	142.1	35	685.6	55	126
16	158	36	331.2	56	246.4
17	194.2	37	278.2	57	263.6
18	100.1	38	303.3	58	60
19	166	39	99.0	59	58
20	194.9	40	134.5	60	122

Exercise 2

1	NaCl	21	BaSO_{4}	41	PbCO_{3}	61	PCl_{3}
2	NaOH	22	AlCl_{3}	42	PbO	62	PCl_{5}
3	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	23	$\mathrm{Al}_{2} \mathrm{O}_{3}$	43	PbO_{2}	63	$\mathrm{P}_{2} \mathrm{O}_{3}$
4	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	24	$\mathrm{Al}(\mathrm{OH})_{3}$	44	PbCl_{2}	64	$\mathrm{P}_{2} \mathrm{O}_{5}$
5	$\mathrm{NO}_{3} \mathrm{PO}_{4}$	25	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	45	PbCl_{4}	65	$\mathrm{H}_{3} \mathrm{PO}_{4}$
6	KCl	26	CuSO_{4}	46	PbS	66	$\mathrm{H}_{2} \mathrm{SO}_{4}$
7	KBr	27	CuO	47	SnCl_{2}	67	HNO_{3}
8	KI	28	CuCl_{2}	48	SnCl_{4}	68	HCl
9	KHCO_{3}	29	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	49	FeSO_{4}	69	CCl_{4}
10	KNO_{2}	30	$\mathrm{Cu}_{2} \mathrm{O}$	50	FeCl_{2}	70	SiCl_{4}
11	MgCl_{2}	31	CuCl	51	$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	71	SiO_{2}
12	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	32	$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$	52	FeCl_{3}	72	SO_{2}
13	$\mathrm{Mg}(\mathrm{OH})_{2}$	33	ZnCO_{3}	53	$\mathrm{Fe}(\mathrm{OH})_{3}$	73	SO_{3}
14	MgO	34	ZnO	54	$\mathrm{Fe}(\mathrm{OH})_{2}$	74	$\mathrm{H}_{2} \mathrm{~S}$
15	MgCO_{3}	35	AgCl	55	$\mathrm{NH}_{4} \mathrm{Cl}$	75	$\mathrm{Cl}_{2} \mathrm{O}$
16	CaO	36	AgBr	56	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	76	NO_{2}
17	CaCl_{2}	37	Agl	57	$\mathrm{NH}_{4} \mathrm{OH}$	77	NO
18	CaSO_{4}	38	AgNO_{3}	58	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	78	CO_{2}
19	CaCO_{3}	39	$\mathrm{Ag}_{2} \mathrm{O}$	59	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	79	CO
20	BaCl_{2}	40	$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	60	$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$	80	$\mathrm{HOH} / \mathrm{H}_{2} \mathrm{O}$

Exercise 3

1 Water
2 Carbon dioxide
3 Ammonia
4 Oxygen
5 Hydrogen
6 Sulfur dioxide (or IV oxide)
7 Sulfur trioxide (or VI oxide)
8 Hydrogen chloride
9 Hydrogen iodide
10 Hydrogen fluoride
11 Methane
12 Hydrogen sulfide
13 Hydrogen bromide
14 Sulfuric acid
15 Nitric acid
16 Sodium chloride
17 Sodium nitrate
18 Sodium carbonate
19 Sodium hydroxide
20 Sodium sulfate
21 Calcium chloride
22 Calcium nitrate
23 Calcium hydroxide
24 Calcium sulfate
25 Barium chloride
26 Aluminium chloride
27 Aluminium nitrate
28 Aluminium sulfate
29 Iron(II) sulfate
30 Iron(II)chloride

31 Iron(III) chloride
32 Iron(III) sulfate
33 Lead(II) oxide
34 Lead(IV) oxide
35 Lead(II) nitrate
36 Lead(II) chloride
37 Lead (II) sulfate
38 Copper(II) nitrate
39 Copper(I) chloride
40 Copper(II) chloride
41 Copper(II) sulfate
42 Zinc chloride
43 Silver nitrate
44 Ammonium chloride
45 Ammonium sulfate
46 Ammonium vanadate(V)
47 Potassium chlorate(V)
48 Potassium iodate
49 Sodium chlorate(I)
50 Sodium nitrite
51 Ethane
52 Butane
53 Octane
54 Ammonium carbonate
55 Potassium manganate(VII)
56 Potassium chromate(VI)
57 Potassium hydrogencarbonate
58 Potassium iodide
59 Cobalt(II) nitrate
60 Potassium astatide

Exercise 4a

1	0.50	26	0.10
2	2.0	27	0.10
3	0.10	28	0.0085
4	5.0	29	0.26
5	20	30	0.104
6	0.010	31	0.20
7	1.0	32	0.082
8	0.22	33	0.050
9	0.0010	34	1.34
10	0.050	35	0.025
11	0.33	36	0.204
12	0.25	37	0.071
13	0.021	38	0.010
14	0.020	39	0.050
15	0.125	40	0.254
16	0.020	41	0.0125
17	0.167	42	0.152
18	1.0	43	0.10
19	0.046	44	0.053
20	0.020	45	0.0043
21	0.0010	46	0.036
22	0.25	47	0.266
23	0.02	48	0.024
24	0.0025	49	0.025
25	0.20	50	1.574

Exercise 4b

1	36 g	26	15.96 g
2	132 g	27	76.38 g
3	47.6 g	28	10.02 g
4	23 g	29	17.82 g
5	33.6 g	30	145.31 g
6	41.02 g	31	2.922 g
7	240.3 g	32	12.26 g
8	80.9 g	33	21.4 g
9	1.177g	34	745 g
10	9.45 g	35	0.069 g
11	26.3 g	36	49.92 g
12	59.5 g	37	27.79 g
13	11.66 g	38	4.82 g
14	80.0 g	39	9.928 g
15	127.9 g	40	302.4 g
16	7.9 g	41	757.68 g
17	34.96 g	42	39.54 g
18	90.1 g	43	10.2 g
19	249 g	44	11.6 g
20	23.39g	45	9.76 g
21	12.22g	46	4.34 g
22	672.8 g	47	9.59 g
23	0.296 g	48	41.08 g
24	13.62 g	49	303.8 g
25	43.74 g	50	1394.8 g

Exercise 4c

$124000 \mathrm{~cm}^{3}$
$2 \quad 2400 \mathrm{~cm}^{3}$
$3 \quad 12000 \mathrm{~cm}^{3}$
$448000 \mathrm{~cm}^{3}$
$5 \quad 2880 \mathrm{~cm}^{3}$
$6 \quad 81600 \mathrm{~cm}^{3}$
$7 \quad 2640 \mathrm{~cm}^{3}$
$8 \quad 96 \mathrm{~cm}^{3}$
$9 \quad 240000 \mathrm{~cm}^{3}$
$10 \quad 10800 \mathrm{~cm}^{3}$

Exercise 4d

$1 \quad 0.0083 \mathrm{~mol}$
$2 \quad 0.0208 \mathrm{~mol}$
$3 \quad 0.0416 \mathrm{~mol}$
$4 \quad 0.0533 \mathrm{~mol}$
$5 \quad 0.0098 \mathrm{~mol}$
$6 \quad 0.0094 \mathrm{~mol}$
$7 \quad 0.0106 \mathrm{~mol}$
$8 \quad 0.0033 \mathrm{~mol}$
$9 \quad 0.0833 \mathrm{~mol}$
$10 \quad 0.10 \mathrm{~mol}$
$11 \quad 134.4 \mathrm{~cm}^{3}$
$12216 \mathrm{~cm}^{3}$
$13 \quad 960 \mathrm{~cm}^{3}$
$142952 \mathrm{~cm}^{3}$
$1555.2 \mathrm{~cm}^{3}$
$16 \quad 192000 \mathrm{~cm}^{3}$
$17 \quad 0.24 \mathrm{~cm}^{3}$
$18 \quad 144000 \mathrm{~cm}^{3}$
$19 \quad 182.4 \mathrm{~cm}^{3}$
$2072000 \mathrm{~cm}^{3}$

Exercise 4e

1	0.367 g	11	0.875 g
2	0.354 g	12	10.27 g
3	1.166 g	13	2.38 g
4	5.333 g	14	0.263 g
5	0.78 g	15	1.217 g
6	0.763 g	16	0.270 g
7	0.757 g	17	0.011 g
8	0.233 g	18	38.33 g
9	0.167 g	19	0.683 g
10	3.20 g	20	1.05 g

Exercise 4 f

1	$1091 \mathrm{~cm}^{3}$	11	$56000 \mathrm{~cm}^{3}$
2	$7059 \mathrm{~cm}^{3}$	12	$30545 \mathrm{~cm}^{3}$
3	$8571 \mathrm{~cm}^{3}$	13	$20308 \mathrm{~cm}^{3}$
4	$7500 \mathrm{~cm}^{3}$	14	$16000 \mathrm{~cm}^{3}$
5	$702 \mathrm{~cm}^{3}$	15	$5260 \mathrm{~cm}^{3}$
6	$670 \mathrm{~cm}^{3}$	16	$2370 \mathrm{~cm}^{3}$
7	$3380 \mathrm{~cm}^{3}$	17	$375 \mathrm{~cm}^{3}$
8	$30000 \mathrm{~cm}^{3}$	18	$12000 \mathrm{~cm}^{3}$
9	$2400000 \mathrm{~cm}^{3}$	19	$26526 \mathrm{~cm}^{3}$
10	$180000 \mathrm{~cm}^{3}$	20	$77143 \mathrm{~cm}^{3}$

Exercise 4g

1	160	11	34
2	64	12	17
3	80	13	38
4	71	14	28
5	2.0	15	44
6	28	16	32
7	30	17	211
8	58	18	36.5
9	32	19	81
10	28	20	128

Exercise 5

Section (a)		
$1 \mathrm{CaCO}_{3}$	16	$\mathrm{N}_{2} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{O}_{8}$
$2 \mathrm{Na}_{2} \mathrm{SO}_{4}$	17	$\mathrm{P}_{4} \mathrm{O}_{10}$
$3 \quad \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	18	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}-\mathrm{CH}_{3} \mathrm{COOH}$
4 PbO	19	$\mathrm{C}_{4} \mathrm{H}_{10}$
$5 \quad \mathrm{~Pb}_{3} \mathrm{O}_{4}$	20	$\mathrm{Fe}_{2} \mathrm{O}_{3}$
$6 \quad \mathrm{H}_{3} \mathrm{PO}_{3}$	21	$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
$7 \quad \mathrm{H}_{2} \mathrm{SO}_{3}$	22	$\mathrm{C}_{6} \mathrm{H}_{6}$
$8 \mathrm{CH}_{4}$	Section (c)	
$9 \quad \mathrm{C}_{3} \mathrm{H}_{8}$	23	PbO
10 HO (giving $\mathrm{H}_{2} \mathrm{O}_{2}$)	24	KO_{2}
$11 \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$	25	$\mathrm{C}_{2} \mathrm{H}_{2}$
$12 \mathrm{FeSO}_{11} \mathrm{H}_{14}\left(\mathrm{FeSO}_{4}-7 \mathrm{H}_{2} \mathrm{O}\right)$	26	AlCl_{3}
Section (b)	27	CH_{4}
$13 \mathrm{C}_{2} \mathrm{H}_{4}$	28	yes
$14 \mathrm{C}_{3} \mathrm{H}_{6}$	29	$\mathrm{CuSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}$
$15 \mathrm{P}_{2} \mathrm{l}_{4}$	30	$\mathrm{PCl}_{5}, \mathrm{PCl}_{3}, \mathrm{Cl}_{2}$

Exercise 6a

1	$2 \mathrm{H}_{2}$	+	O_{2}		$2 \mathrm{H}_{2} \mathrm{O}$			
2	BaCl_{2}	+	2 NaOH	\rightarrow	$\mathrm{Ba}(\mathrm{OH})_{2}$	+	2 NaCl	
3	$\mathrm{H}_{2} \mathrm{SO}_{4}$	+	2 KOH	\rightarrow	$\mathrm{K}_{2} \mathrm{SO}_{4}$	+	$2 \mathrm{H}_{2} \mathrm{O}$	
4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	+	2 HCl	\rightarrow	2 KCl	+	$\mathrm{H}_{2} \mathrm{O}$	$+\mathrm{CO}_{2}$
5	CaCO_{3}	+	$2 \mathrm{HNO}_{3}$	\rightarrow	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	+	$\mathrm{H}_{2} \mathrm{O}$	$+\mathrm{CO}_{2}$
6	Ca	+	$2 \mathrm{H}_{2} \mathrm{O}$	\rightarrow	$\mathrm{Ca}(\mathrm{OH})_{2}$	+	H_{2}	
7	$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	+	2 NaI	\rightarrow	PbI_{2}	+	$2 \mathrm{NaNO}_{3}$	
8	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	+	6 NaOH	\rightarrow	$2 \mathrm{Al}(\mathrm{OH})_{3}$	+	$3 \mathrm{Na}_{2} \mathrm{SO}_{4}$	
9	$\mathrm{Al}(\mathrm{OH})_{3}$	+	NaOH	\rightarrow	NaAlO_{2}	+	$2 \mathrm{H}_{2} \mathrm{O}$	
10	$2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$	\rightarrow	2 PbO	+	$4 \mathrm{NO}_{2}$		O_{2}	
11	$2 \mathrm{FeSO}_{4}$	\rightarrow	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	+	SO_{2}		SO_{3}	
12	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	\rightarrow	$\mathrm{N}_{2} \mathrm{O}$	+	$2 \mathrm{H}_{2} \mathrm{O}$			
13	$2 \mathrm{NaNO}_{3}$	\rightarrow	$2 \mathrm{NaNO}_{2}$	+	O_{2}			
14	CH_{4}	+	$2 \mathrm{O}_{2}$	\rightarrow	CO_{2}	+	$2 \mathrm{H}_{2} \mathrm{O}$	
15	$2 \mathrm{C}_{4} \mathrm{H}_{10}$	+	$13 \mathrm{O}_{2}$	\rightarrow	$8 \mathrm{CO}_{2}$	+	$10 \mathrm{H}_{2} \mathrm{O}$	
16	PCl_{3}	+	$3 \mathrm{H}_{2} \mathrm{O}$	\rightarrow	$\mathrm{H}_{3} \mathrm{PO}_{3}$	+	3 HCl	
17	$8 \mathrm{HNO}_{3}$	+	3 Cu	\rightarrow	$3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	+	3NO	$+4 \mathrm{H}_{2} \mathrm{O}$
18	$4 \mathrm{HNO}_{3}$	+	Cu	\rightarrow	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	+	$2 \mathrm{NO}_{2}$	$+2 \mathrm{H}_{2} \mathrm{O}$
19	$\mathrm{H}_{3} \mathrm{PO}_{4}$	+	NaOH	\rightarrow	$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	+	$\mathrm{H}_{2} \mathrm{O}$	
20	$\mathrm{H}_{3} \mathrm{PO}_{4}$	+	3 NaOH	\rightarrow	$\mathrm{Na}_{3} \mathrm{PO}_{4}$	+	$3 \mathrm{H}_{2} \mathrm{O}$	
21	$\mathrm{H}_{3} \mathrm{PO}_{4}$	+	2 NaOH	\rightarrow	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	+	$2 \mathrm{H}_{2} \mathrm{O}$	
22	6 NaOH	+	$3 \mathrm{Cl}_{2}$	\rightarrow	NaClO_{3}	+	5 NaCl	$+3 \mathrm{H}_{2} \mathrm{O}$
23	N_{2}	+	$3 \mathrm{H}_{2}$	\rightarrow	$2 \mathrm{NH}_{3}$			
24	2 NaBr	+	$\mathrm{H}_{2} \mathrm{SO}_{4}$	\rightarrow	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	+	HBr	
25	2 HBr	+	$\mathrm{H}_{2} \mathrm{SO}_{4}$	\rightarrow	$2 \mathrm{H}_{2} \mathrm{O}$	+	SO_{2}	$+\mathrm{Br}_{2}$
26	$3 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	+	PCl_{3}	\rightarrow	$3 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	+	$\mathrm{H}_{3} \mathrm{PO}_{3}$	
27	$\mathrm{Fe}_{3} \mathrm{O}_{4}$	+	$4 \mathrm{H}_{2}$	\rightarrow	3 Fe	+	$4 \mathrm{H}_{2} \mathrm{O}$	
28	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	+	3 CO	\rightarrow	2 Fe	+	$3 \mathrm{CO}_{2}$	
29	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	+	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	\rightarrow	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	+	$\mathrm{H}_{2} \mathrm{O}$	
30	$2 \mathrm{KMnO}_{4}$	+	16 HCl	\rightarrow	$2 \mathrm{KCl}+$	2M	+	$\mathrm{H}_{2} \mathrm{O}+$

Exercise 6b

1 Hydrogen is not H but H_{2}, which gives

$$
2 \mathrm{Na}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

2 Since the charge of lead is 2 not 1 , lead nitrate is not PbNO_{3} but $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and also lead chloride is PbCl_{2}.

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{NaCl}(\mathrm{aq}) \quad \rightarrow \mathrm{PbCl}_{2}(\mathrm{~s}) \quad+2 \mathrm{NaNO}_{3}(\mathrm{aq})
$$

3 Calcium hydroxide is $\mathrm{Ca}(\mathrm{OH})_{2}$.

```
\(\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \quad \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\)
```

4 This does not balance.

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \quad+3 \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}) \quad+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

5 A magnesium compound cannot give a calcium compound!

6 Ozone O_{3} is not produced by heating a nitrate, O_{2} is.
$2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{CuO}(\mathrm{s}) \quad+4 \mathrm{NO}_{2}(\mathrm{~g}) \quad+\mathrm{O}_{2}(\mathrm{~g})$

7 This reaction does not take place and so no equation can be written.

8 Aluminium has a charge of 3 not 2 as in this equation.
$\mathrm{AlCl}_{3}(\mathrm{~s})+3 \mathrm{KOH}(\mathrm{aq}) \quad \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s}) \quad+3 \mathrm{KCl}(\mathrm{aq})$

9 Sodium has a charge of 1 not 2 as in this equation.
$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \quad \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad+\mathrm{CO}_{2}(\mathrm{~g})$

10 Silver chloride is not soluble in water. Thus the AgCl needs a (s) symbol.

Exercise 6c

1	$\mathrm{Zn}(\mathrm{s})$	+	$\mathrm{CuSO}_{4}(\mathrm{aq})$	\rightarrow	$\mathrm{Cu}(\mathrm{s})$		$\mathrm{ZnSO}_{4}(\mathrm{aq})$		
2	$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$	+	$2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$	\rightarrow	$\mathrm{CaCl}_{2}(\mathrm{~s})$	+	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$		$\mathrm{NH}_{3}(\mathrm{~g})$
3	$2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$	\rightarrow	2PbO(s)	+	$4 \mathrm{NO}_{2}(\mathrm{~g})$	+	$\mathrm{O}_{2}(\mathrm{~g})$		
4	$\mathrm{SiCl}_{4}(\mathrm{l})$	+	$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	\rightarrow	$\mathrm{SiO}_{2}(\mathrm{~s})$	+	$\mathrm{HCl}(\mathrm{g})$		
5	$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq})$	\rightarrow	$\mathrm{CaCO}_{3}(\mathrm{~s})$	+	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+	$\mathrm{CO}_{2}(\mathrm{~g})$		
6	$2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})$	+	$2502(\mathrm{~g})$	\rightarrow	$16 \mathrm{CO}_{2}(\mathrm{~g})$	+	$8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$		
7	$6 \mathrm{NaOH}(\mathrm{aq})$	+	$3 \mathrm{Cl}_{2}(\mathrm{~g})$	\rightarrow	$\mathrm{NaClO}_{3}(\mathrm{aq})$	+	$5 \mathrm{NaCl}(\mathrm{aq})$		$3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
	$6 \mathrm{NaOH}(\mathrm{aq})$	+	$3 \mathrm{Br}_{2}(\mathrm{~g})$	\rightarrow	$\mathrm{NaBrO}_{3}(\mathrm{aq})$	+	$5 \mathrm{NaBr}(\mathrm{aq})$		$3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
	$6 \mathrm{NaOH}(\mathrm{aq})$	+	$3 \mathrm{I}_{2}(\mathrm{~g})$	\rightarrow	$\mathrm{NaIO}_{3}(\mathrm{aq})$	+	$5 \mathrm{Nal}(\mathrm{aq})$		$3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
8	2M(s)	+	$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	\rightarrow	2MOH(aq)	+	$\mathrm{H}_{2}(\mathrm{~g})$		
	Where $\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}$ or Cs								
9	$\mathrm{SnCl}_{2}(\mathrm{aq})$	+	$2 \mathrm{HgCl}_{2}(\mathrm{aq})$	\rightarrow	$2 \mathrm{HgCl}(\mathrm{s})$	+	$\mathrm{SnCl}_{4}(\mathrm{aq})$		
10	$9 \mathrm{H}_{2} \mathrm{SO}_{4}$	8 KI	\rightarrow	$4 I_{2}$	$+\mathrm{H}_{2} \mathrm{~S}$		$+8 \mathrm{KHSO}_{4}$		$+4 \mathrm{H}_{2} \mathrm{O}$

Exercise 7

1	AlCl_{3}	+	$3 \mathrm{AgNO}_{3}$	\rightarrow	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	$+3 \mathrm{AgCl}$
2	$\mathrm{K}_{2} \mathrm{CrO}_{4}$	+	$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	\rightarrow	PbCrO_{4}	+ $2 \mathrm{KNO}_{3}$
3	$2 \mathrm{AgNO}_{3}$	\rightarrow	2 Ag	+	$2 \mathrm{NO}_{2}$	$+\mathrm{O}_{2}$
4	i) 1 mole					
	ii) 2 moles					
	iii)					
	$\mathrm{H}_{3} \mathrm{PO}_{4}$	+	NaOH	\rightarrow	$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	$+\mathrm{H}_{2} \mathrm{O}$
	$\mathrm{H}_{3} \mathrm{PO}_{4}$	+	2 NaOH	\rightarrow	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	+ $2 \mathrm{H}_{2} \mathrm{O}$
	iv) $75 \mathrm{~cm}^{3}$					
5	$x=3$					
6	$\mathrm{x}=5$					
	$\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$	\rightarrow	CuSO_{4}	+	$5 \mathrm{H}_{2} \mathrm{O}$	
7	$4 \mathrm{NH}_{3}$	+	$5 \mathrm{O}_{2}$	\rightarrow	4NO	$+6 \mathrm{H}_{2} \mathrm{O}$
8	$\mathrm{C}_{3} \mathrm{H}_{8}$	+	$5 \mathrm{O}_{2}$	\rightarrow	$3 \mathrm{CO}_{2}$	$+4 \mathrm{H}_{2} \mathrm{O}$
9	It is					
10	FeSO ${ }_{4} .7 \mathrm{H}_{2} \mathrm{O}$	\rightarrow	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$+\mathrm{SO}_{2}$	$+\mathrm{SO}_{3}$	$+14 \mathrm{H}_{2} \mathrm{O}$

Exercise 8

$1 \quad 11.2 \mathrm{~g}$
$2 \quad 21.59 \mathrm{~g}$
$3 \quad 0.682 \mathrm{~g}$ of ethanoic acid and 0.523 g of ethanol
$4 \quad 143$ tonnes
$5 \quad 14.52 \mathrm{~g}$
$6 \quad 8.0 \mathrm{~g}$ of sodium hydroxide, 9.75 g of copper hydroxide
$7 \quad 12000 \mathrm{~cm}^{3}$
$8 \quad 54.7 \mathrm{~g}$ of calcium nitrate, $8.0 \mathrm{dm}^{3}$ of carbon dioxide
$96 \mathrm{dm}^{3}$ total ($4.8 \mathrm{dm}^{3}$ of nitrogen dioxide and $1.2 \mathrm{dm}^{3}$ of oxygen)
$10 \mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{4}+7 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg} \mathrm{SO}_{4} .7 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2}$ 41.0 g
$11 \quad 31.9 \mathrm{~g}$
$12 \quad 324.3 \mathrm{~g}$
$13 \quad 5.11 \mathrm{~g}$ of ethanol, $2.67 \mathrm{dm}^{3}$ of carbon dioxide
14 (i) 12.30 g of zinc hydroxide
(ii) 9.12 g of aluminium hydroxide
(iii) 9.67 g of magnesium hydroxide
$150.600 \mathrm{dm}^{3}$
$16 \quad 0.100 \mathrm{~g}$
$17 \quad 2.94 \mathrm{~g}$ of sodium chloride, 1.065 g of sodium chlorate(v)
$184.15 \times 10^{6} \mathrm{dm}^{3}$ of nitrogen, $12.5 \times 10^{6} \mathrm{dm}^{3}$ of hydrogen
1963 tonnes of nitric acid, $4.8 \times 10^{7} \mathrm{dm}^{3}$ of oxygen
202198 g of calcium carbonate, $4.395 \mathrm{dm}^{3}$ of 10 M HCl

Exercise 9

Section (a)

1	$20 \mathrm{~cm}^{3} \mathrm{O}_{2}$	$10 \mathrm{~cm}^{3} \mathrm{CO}_{2}$	$20 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
2	$30 \mathrm{~cm}^{3} \mathrm{O}_{2}$	$20 \mathrm{~cm}^{3} \mathrm{CO}_{2}$	$20 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
3	$25 \mathrm{~cm}^{3} \mathrm{O}_{2}$	$20 \mathrm{~cm}^{3} \mathrm{CO}_{2}$	$10 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
4	$125 \mathrm{~cm}^{3} \mathrm{O}_{2}$	$80 \mathrm{~cm}^{3} \mathrm{CO}_{2}$	$90 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
5	$30 \mathrm{~cm}^{3} \mathrm{H}_{2}$	$20 \mathrm{~cm}^{3} \mathrm{NH}_{3}$	

Section (b)

$1500 \mathrm{~cm}^{3} \mathrm{O}_{2} \quad\left(2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}\right)$
$2375 \mathrm{~cm}^{3}$ air $\left(2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}\right)$
$3 \quad 2500 \mathrm{~cm}^{3} \mathrm{NH}_{3}$ needed $\quad 5 / 4 \times 2500=3125 \mathrm{~cm}^{3} \mathrm{O}_{2} \rightarrow 15625 \mathrm{~cm}^{3}$ air
$4 \quad 6.5 \times 24000 \mathrm{~cm}^{3}=156 \mathrm{~m}^{3}$
$5 \quad 24000 \mathrm{~cm}^{3}$

Exercise 10

1	$\mathrm{Pb}^{2+}(\mathrm{aq})$	$+2 \mathrm{OH}^{(a q)}$	$\rightarrow \quad \mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})$		
2	$\mathrm{Al}^{3+}(\mathrm{aq})$	+ 30H ${ }^{-}(\mathrm{aq})$	$\rightarrow \quad \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$		
3	$\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$	+ $\mathrm{OH}^{-}(\mathrm{aq})$	$\rightarrow \quad \mathrm{AlO}_{2}{ }^{-}(\mathrm{aq})$	+	$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
4	$\mathrm{Cl}_{2}(\mathrm{~g})+$	$6 \mathrm{H}^{-}(\mathrm{aq}) \rightarrow$	$\mathrm{ClO}_{3}{ }^{-}(\mathrm{aq})+$	$5 \mathrm{Cl}^{-}(\mathrm{aq})$	$+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
5	$2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$	$+\mathrm{I}_{2}(\mathrm{~s})$	$\rightarrow \quad \mathrm{S}_{4} \mathrm{O}_{6}{ }^{-}(\mathrm{aq})$	+	$21^{-}(\mathrm{aq})$
6	$\mathrm{Cu}^{2+}(\mathrm{aq})$	+ $2 \mathrm{OH}^{-}(\mathrm{aq})$	$\rightarrow \quad \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$		
7	$\mathrm{CO}_{3}{ }^{2-}(\mathrm{s})$	$+2 \mathrm{H}^{+}(\mathrm{aq})$	$\rightarrow \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+	$\mathrm{CO}_{2}(\mathrm{~g})$
8	$\mathrm{Zn}(\mathrm{s})$	$+2 \mathrm{H}^{+}(\mathrm{aq})$	$\rightarrow \quad \mathrm{Zn}^{2+}(\mathrm{aq})$	+	$\mathrm{H}_{2}(\mathrm{~g})$
9	$\mathrm{Zn}(\mathrm{s})$	+ $\mathrm{Pb}^{2+}(\mathrm{aq})$	$\rightarrow \quad \mathrm{Pb}(\mathrm{s})$	+	$\mathrm{Zn}^{2+}(\mathrm{aq})$
10	$\mathrm{H}^{+}(\mathrm{aq})$	$+\mathrm{OH}^{-}(\mathrm{aq})$	$\rightarrow \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$		
11	$\mathrm{Mg}(\mathrm{s})$	$+2 \mathrm{H}^{+}(\mathrm{aq})$	$\rightarrow \quad \mathrm{Mg}^{2+}(\mathrm{aq})$		$\mathrm{H}_{2}(\mathrm{~g})$
12	$\mathrm{CO}_{3}{ }^{-}(\mathrm{s})$	$+2 \mathrm{H}^{+}(\mathrm{aq})$	$\rightarrow \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$		$\mathrm{CO}_{2}(\mathrm{~g})$
13	$\mathrm{CuO}(\mathrm{s})$	$+2 \mathrm{H}^{+}(\mathrm{aq})$	$\rightarrow \quad \mathrm{Cu}^{2+}(\mathrm{aq})$		$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
14	$\mathrm{Ba}^{2+}(\mathrm{aq})$	$+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	$\rightarrow \quad \mathrm{BaSO}_{4}(\mathrm{~s})$		
15	$\mathrm{Ag}^{+}(\mathrm{aq})$	+ $\left.\mathrm{Cl}^{(} \mathrm{aq}\right)$	$\rightarrow \quad \mathrm{AgCl}(\mathrm{s})$		
16	$\mathrm{Zn}(\mathrm{s})$	+ $2 \mathrm{Ag}^{+}(\mathrm{aq})$	$\rightarrow \quad \mathrm{Zn}^{2+}(\mathrm{aq})$		2Ag(s)
17-20	$20 \mathrm{H}^{+}(\mathrm{aq})$	+ $\mathrm{OH}^{-}(\mathrm{aq})$	$\rightarrow \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$		
In every case the reaction is the same					

Exercise 11

$1 \quad 0.168 \mathrm{~mol} \mathrm{dm}^{-3}$
$20.136 \mathrm{~mol} \mathrm{dm}^{-3}$
$3 \quad 0.118 \mathrm{~mol} \mathrm{dm}^{-3}$
$4 \quad 1.0 \mathrm{~mol} \mathrm{dm}^{-3}$
$5 \quad 0.12 \mathrm{~mol} \mathrm{dm}^{-3}$
$6 \quad 0.040 \mathrm{~mol} \mathrm{dm}^{-3}$
$7 \quad 0.0080 \mathrm{~mol} \mathrm{dm}^{-3}$
$8 \quad 0.010 \mathrm{~mol} \mathrm{dm}^{-3}$
$9 \quad 0.10 \mathrm{~mol} \mathrm{dm}^{-3}$
$10 \quad 0.40 \mathrm{~mol} \mathrm{dm}^{-3}$
$110.050 \mathrm{~mol} \mathrm{dm}^{-3}$
$120.167 \mathrm{~mol} \mathrm{dm}^{-3}$
$13 \quad 2.26 \mathrm{~g} \mathrm{dm}^{-3}$
$14 \quad 0.099 \mathrm{~mol} \mathrm{dm}^{-3}$
$15 \quad 1.755 \mathrm{~g} \mathrm{dm}^{-3}$
163.0
$17 \quad 0.02 \mathrm{~mol} \mathrm{dm}^{-3}$
$1850 \mathrm{~cm}^{3}$
$1950 \mathrm{~cm}^{3}$
$2025 \mathrm{~cm}^{3}$
$21 \quad 0.359 \mathrm{~g}$
$22 \quad 1.0 \mathrm{~g}$
$23 \quad 240 \mathrm{~cm}^{3}$
$24 \quad 0.12 \mathrm{~g} \mathrm{Mg}$ $120 \mathrm{~cm}^{3} \mathrm{H}_{2}$
$25480 \mathrm{~cm}^{3}$
advancing learning, changing lives

For more information on Edexcel and BTEC qualifications please contact

