
November 11 i

 Visual Basic
Console Cook Book

Contents
1. Introduction ... 2

Visual Basic Express ... 2
Computer System ... 2
Programming structures .. 2
Creating a Console Application ... 3
Saving your Project ... 6
Opening a Project ... 6

2. Variables .. 7
Declaring Variables ... 8
Declaring Multiple Variables .. 9
Constants .. 9
Data types ... 10

Basic Data Types .. 10
Full list of Data Types ... 10

Examples ... 12
3. Input & output .. 13

Programming Projects .. 13
Writing multiple values .. 14

4. Adding Comments .. 15
5. Calculations ... 16

Operators .. 17
Examples .. 17

Math Functions .. 18
Formatting numbers .. 19

Sample Program using format .. 20
Programming Projects .. 21
Programming Projects .. 22

6. Selection .. 23
Comparison Operators .. 23
The IF THEN statement .. 23
Complex conditions ... 24

Logical Operators .. 24
The IF THEN ELSE statement .. 25
Nested If .. 26
IF ELSEIF statement ... 27
Select Case ... 28

Programming Projects .. 30
7. Iteration .. 32

FOR loop ... 32
FOR STEP loop... 33

Programming Projects .. 33
WHILE loop ... 35
REPEAT loop .. 35

Programming Projects .. 36
Challenge Project .. 36

8. Array Data Type ... 37
One Dimensional Arrays ... 37

Programming Projects .. 39

Introduction

Visual Basic Console Programming ii

Challenge Projects .. 40
Multi-Dimensional Arrays .. 41

9. User defined Data Type .. 42

10. Enumeration & Sets .. 44
Enumeration .. 44
Sets ... 45

11. String Manipulation ... 46
Using LEN() ... 46
Using Left() .. 47
Using Right() ... 48
Using Mid() .. 49
Trimming ... 50
Converting Strings to Numbers ... 51

Sting to Integer .. 51
String to Decimal ... 51

Converting Numbers to Strings ... 52
Integer to String .. 52
Single/Double to String ... 52

Converting to and from ASCII ... 53
Converting a character to ASCII ... 53
Converting an ASCII code to a character 53

String to Date .. 54
Changing Case ... 54
Time and Date Manipulation ... 55
VB.NET Split String ... 56

Simple Split call ... 56
Splitting parts of file path .. 57
How to split based on words .. 58
Programming Projects .. 60
Challenge projects .. 60

12. Subroutines & Procedures ... 61
13. Variable Scope .. 62

Global Variable .. 62
Local Variables .. 62
Scope of a Variable ... 63
Explicit and Strict ... 64
Parameters .. 65

By Value .. 65
By Reference .. 66
Programming Projects .. 67
Challenge Projects .. 67

14. Functions ... 68
Programming Projects .. 69

15. Error Handling ... 70

16. Using Text Files ... 72
Accessing special Folders ... 72

Using folders ... 73
Files using Channels ... 74

Reading Files (Input)... 74
Reading a line of text .. 74
Closing file .. 74
Writing a line of Text ... 75
Printing a line of text ... 75
Writing a line of text .. 75
Creating CSV files with WRITELINE .. 76
Closing file .. 76

StreamWriter with text files ... 77
StreamReader with text files ... 78

Introduction

Visual Basic Console Programming iii

Reading lines from a Text File .. 78
17. Binary Files .. 79

Creating Binary Files ... 79
Writing Binary Files ... 80
Reading Binary Files ... 80
Appending to a Binary File .. 81

18. CSV Files .. 82

19. Summary of VB Functions ... 84
Date/Time Functions ... 84
Conversion Functions ... 85
Format Functions .. 85
Math Functions .. 86
Array Functions ... 86
String Functions .. 87
Other Functions ... 88
Formatting Symbols .. 89
Named Formats... 92

VB.Net Consol Programming

Introduction 2

1. Introduction
These notes describe how to use Microsoft’s Visual Basic. While this is a full windows
environment, these notes will describe the basic programming concepts and console
applications

The console is a basic text window that allows text to be displayed and data to be entered.
While it is not true windows programming, it is excellent to get you going with
programming.

Figure 1 - Console

Visual Basic Express

If you don't have either Visual Studio then you can use the free Visual Basic Express
Edition from Microsoft. This can be downloaded from the following location:

http://www.microsoft.com/express/Downloads/#2008-Visual-Basic

Computer System

Programming structures

Any program is made from four programming structures:

• Sequence – performing each statement in order from first to last.
• Selection – deciding which statements to execute depending on a condition
• Iteration – repeating statements

Another key aspect of programming is Assignment

http://www.microsoft.com/express/Downloads/#2008-Visual-Basic�

VB.Net Consol Programming

Introduction 3

Creating a Console Application

Launch your Visual Basic .NET or Visual Studio software. When the software first loads,
you'll see a screen something like this one:

Figure 2 - Starting Visual Basic

There's a lot happening on the start page. But basically, this is where you can start a new
project, or open an existing one. The first Tab, Start Page, is selected.

To create a new project, a program in Visual Basic is called a project as it contains many
elements

1. Select the file Menu
2. Select New Project

Within Visual Basic, you can create many different types of programs. We will get started
by using the console application.

The new Project dialogue box appears, allowing you to select pre-created templates. From
this windows,

1. Select the Consol Application template
2. Enter Hello World in the projects name box

VB.Net Consol Programming

Introduction 4

Figure 3 - Types of Projects

The project environment now shows your program

Figure 4 - Development Environment

 Select Consol Application

 Give the project a name

The code area

Details of any errors

Solution Explorer

Object’s properties

VB.Net Consol Programming

Introduction 5

Enter the following code EXACTLY as shown below.

Module Module1

 Sub Main()
 Console.WriteLine("Hello World")
 Console.ReadLine()
 End Sub

End Module

Press the run button

You will see the results in a console window

VB.Net Consol Programming

Introduction 6

Saving your Project

There are many ways for saving a projects created in VB.net, bur the best and
recommended is to select File →Save All

NOTE: if you are saving the projects in school, you MUST have it in the

Visual Studio 2010/projects
folder in your user area. If you save it anywhere else, the program will not run

Opening a Project

In VB.net, you can select a recent project from the start page:

Alternatively, use File →Open Project

VB.Net Consol Programming

Variables 7

2. Variables
What most programs end up doing is storing things in the computer’s memory, and
manipulating this store.

If you want to add two numbers together, you put the numbers into storage areas and “tell”
Visual Basic to add them up. But you can’t do this without variables.

So a variable is a storage area of the computer’s memory. Think of it like this: a variable is
an empty cardboard box. Now, imagine you have a very large room, and in this room you
have a whole lot of empty cardboard boxes. Each empty cardboard box is a single variable.
To add two numbers together, write the first number on a piece of paper and put the piece
of paper into an empty box. Write the second number on a piece of paper and put this
second piece of paper in a different cardboard box.

Now, out of all your thousands of empty cardboard boxes two of them contain pieces of
paper with numbers on them. To help you remember which of the thousands of boxes hold
your numbers, put a sticky label on each of the two boxes. Write “number1" on the first
sticky label, and “number2" on the second label.

What have we just done? Well, we’ve created a large memory area (the room and the
cardboard boxes), and we’ve set up two of the boxes to hold our numbers (two variables).
We’ve also given each of these variables a name (the sticky labels) so that we can
remember where they are.

In Visual Basic, variable are created and used as shown below:

Dim number1 As Integer
Dim number 2 As Integer

number1 = 3
number2 = 5

In this code, the 1st and 2nd lines declare two variables; number1 and number2. These
variables can only store whole numbers (integers)

The 3rd and 4th lines assign numbers to the variables; number1 stores 3 and number2
stores 5.

VB.Net Consol Programming

Variables 8

Declaring Variables

The process of creating a variable is called declaring a variable. Each declaration needs 4
things:

• DIM keyword
• Variable name
• AS keyword
• Variable data type

A variable can be called any combination of letters and numbers as long as

• The first character of the variable name is a letter and not a number
• The variable Is one word and doesn’t contain spaces.
• Optionally contain _ (underscore)

 Which are valid variable name?

Tempname

1st_score

Score

Temp score

DIM Variable
name AS Data type

It is good practice to declare all your
variables, before you use them, at the
start of each procedure, module or
function.

VB.Net Consol Programming

Variables 9

Declaring Multiple Variables

To save time multiple variables of the same type can be declared with the dame DIM
statement.

Dim index As Integer
Dim grade As Integer
Dim counter As Integer

The three declarations above can be rewritten as one declaration:

Dim index, grade, counter As Integer

Constants

Just like variables, constants are "dataholders". They can be used to store data that is
needed at runtime.

In contrast to variable, the content of a constant can't change at runtime, it has a constant
value.

Before the program can be executed (or compiled) the value for a constant must be known.

Sub Main()
 'Example of creating constants
 'Written by KPY
 'Date 12/2/2020

 Const pi As Double = 3.1415
 'create a constant called pi with a value 3.1415
 Dim radius As Double = 10
 'creates a constant called radius with a value 10
 Dim circumference As Double = radius * 2 * pi
 'Creates a constant with a calucualtion
 Dim area As Double = radius ^ 2 * pi
 'creating a constant with a calculation
 Console.WriteLine("Circle Circumference : " & circumference)
 Console.WriteLine("Circle Area : " & area)

 Console.ReadLine()

 End Sub

VB.Net Consol Programming

Variables 10

Data types

The following table shows the Visual Basic data types, their supporting common language
runtime types, their nominal storage allocation, and their value ranges.

Basic Data Types
A variable can store one type of data. The most used data types are:

Type Description
Integer Stores a whole number,

e.g. 78
double Stores a decimal number,

e.g. 74.23754
Char Stores one character,

e.g A
string Stores text,

e.g. Hello
Boolean Stores True or False

Full list of Data Types

Visual Basic type Nominal

storage
allocation

Value range

Boolean Depends on
implementing
platform

True or False

Byte 1 byte 0 through 255 (unsigned)
Char (single
character)

2 bytes 0 through 65535 (unsigned)

Date 8 bytes 0:00:00 (midnight) on January 1, 0001 through
11:59:59 PM on December 31, 9999

Decimal 16 bytes 0 through +/-
79,228,162,514,264,337,593,543,950,335 (+/-
7.9...E+28) † with no decimal point; 0 through +/-
7.9228162514264337593543950335 with 28
places to the right of the decimal;
smallest nonzero number is +/-
0.0000000000000000000000000001 (+/-1E-28) †

Double (double-
precision floating-
point)

8 bytes -1.79769313486231570E+308 through -
4.94065645841246544E-324 † for negative values;
4.94065645841246544E-324 through
1.79769313486231570E+308 † for positive values

Integer 4 bytes -2,147,483,648 through 2,147,483,647 (signed)
Long (long integer) 8 bytes -9,223,372,036,854,775,808 through

9,223,372,036,854,775,807 (9.2...E+18 †) (signed)
Object 4 bytes on 32-bit

platform
8 bytes on 64-bit
platform

Any type can be stored in a variable of type
Object

SByte 1 byte -128 through 127 (signed)

VB.Net Consol Programming

Variables 11

Short (short integer) 2 bytes -32,768 through 32,767 (signed)
Single (single-
precision floating-
point)

4 bytes -3.4028235E+38 through -1.401298E-45 † for
negative values;
1.401298E-45 through 3.4028235E+38 † for
positive values

String (variable-
length)

Depends on
implementing
platform

0 to approximately 2 billion Unicode characters

UInteger 4 bytes 0 through 4,294,967,295 (unsigned)
ULong 8 bytes 0 through 18,446,744,073,709,551,615 (1.8...E+19

†) (unsigned)
User-Defined (see
page 42)

Depends on
implementing
platform

Each member of the structure has a range
determined by its data type and independent of
the ranges of the other members

UShort 2 bytes 0 through 65,535 (unsigned)
† In scientific notation, "E" refers to a power of 10. So 3.56E+2 signifies 3.56 x 102 or 356,
and 3.56E-2 signifies 3.56 / 102 or 0.0356.

VB.Net Consol Programming

Variables 12

Examples

To create a variable to store text, such as your name:
 Dim name As String

To create a variable to store a valid date, such as Date of Birth:
 Dim DOB As Date

To create a variable to store a whole number:
 Dim mark As Integer

To create a variable to hold any number, including decimal numbers:
 Dim temperature As Single

To create a variable that stores only True or False
 Dim pass As Boolean

 Which of these variable declarations are correct?

DIM counter AS INTEGER

DIM My Score AS INTEGER

DIM grade AS NUMBER

DIM name AS TEXT

DIM school as string

VB.Net Consol Programming

Input & output 13

3. Input & output
Create a new console application and enter the following program:

Module Module1

 Sub Main()
 Dim name As String

 Console.WriteLine("Hello, what is your name?")
 name = Console.ReadLine()
 Console.Write("Hello ")
 Console.WriteLine(name)
 Console.ReadLine()
 End Sub

End Module

When you have double checked that you have entered the program exactly as above, run
it.

This is what the program does:

Dim name As String
This statement creates a string variable called name

Console.WriteLine("Hello, what is your name?")
This displays the text within the quotation marks (“) to the console window. In this case it
displays Hello, what is your name. Notice how it doesn’t display the quotation marks but
does add a new line.

name = Console.ReadLine()
The readline() command lets the user type in some text and when the enter key is
pressed, will assign it to the variable name.

Console.Write("Hello ")
This displays the text inside the quotation marks but does not give a new line afterwards.

Console.WriteLine(name)
Notice that there are no quotation marks in this statement? This displays the contents of
the variable name with a newline at the end

Programming Projects

 Write a console application that asks for your forename and then your surname and then
displays both names on the same line.

VB.Net Consol Programming

Input & output 14

Writing multiple values

The technical term for joining things together is concatenation. Concatenation operators
join multiple strings into a single string. There are two concatenation operators, + and & as
summarized below:

Operator Use
+ String Concatenation
& String Concatenation

Module Module1

 Sub Main()
 Dim name As String
 Dim grade As Integer

 Console.WriteLine("Enter your name")
 name = Console.ReadLine()
 Console.WriteLine("Enter your grade")
 grade = Console.ReadLine()

 Console.WriteLine(name & "'s grade is " & grade)
 Console.ReadLine()
 End Sub

End Module

 Write a console application that asks for your forename and then your surname and
then displays both names on the same line.

 Write another console application that asks for a name and then a numerical grade (which
is a whole number)

There is a single
apostrophe after
the quotation
mark

VB.Net Consol Programming

Adding Comments 15

4. Adding Comments
Your code should be self documenting this means that you should use

• meaningful and descriptive variable and constant names
• have a description of each module or subroutine
• Who write the program
• Date of the program creation

In Visual Basic, a comment starts the an apostrophe

Module Module1
 'Program to concatenate variables
 'written by KPY
 'Date 12/2/2011

 Sub Main()
 'Declaring my variables
 Dim name As String
 Dim grade As Integer

 'Entering the data
 Console.WriteLine("Enter your name")
 name = Console.ReadLine()
 Console.WriteLine("Enter your grade")
 grade = Console.ReadLine()

 'Displaying the results
 Console.WriteLine(name & "'s grade is " & grade)
 Console.ReadLine()
 End Sub

End Module

VB.Net Consol Programming

Calculations 16

5. Calculations

Calculations are done as part of an assignment:

Module Module1
 'Program to calculate the sum and product of two numbers
 'written by KPY
 'Date 12/2/1020

 Sub Main()
 Dim number1 As Integer
 Dim number2 As Integer
 Dim sum As Integer
 Dim product As Integer

 Console.WriteLine("Enter number 1")
 number1 = Console.ReadLine()

 Console.WriteLine("Enter number 2")
 number2 = Console.ReadLine()

 sum = number1 + number2
 product = number1 * number2

 Console.Write("the sum is ")
 Console.WriteLine(sum)

 Console.Write("the product is ")
 Console.WriteLine(product)

 Console.ReadLine()

 End Sub

End Module

Notice how the above program take the form

• Input
• Process
• Output

VB.Net Consol Programming

Calculations 17

Operators

Operators perform some action on operands (variables)

Operator Use
^ Exponentiation
- Negation (used to reverse the sign of the given value, exp

-intValue)
* Multiplication
/ Division
\ Integer Division
Mod Modulus Arithmetic
+ Addition
- Subtraction

Examples

Dim z As Double
z = 23 ^ 3
' The preceding statement sets z to 12167 (the cube of 23).

Dim k As Integer
k = 23 \ 5
' The preceding statement sets k to 4.

Integer division is carried out using the \ Operator. Integer division returns the quotient,
that is, the integer that represents the number of times the divisor can divide into the
dividend without consideration of any remainder.

Both the divisor and the dividend must be integral types (SByte, Byte, Short, UShort,
Integer, UInteger, Long, and ULong) for this operator. All other types must be converted
to an integral type first. The following example demonstrates integer division.

Dim x As Integer = 100
Dim y As Integer = 6
Dim z As Integer
z = x Mod y
' The preceding statement sets z to 4.

Dim a As Double = 100.3
Dim b As Double = 4.13
Dim c As Double
c = a Mod b
' The preceding statement sets c to 1.18.

Modulus arithmetic is performed using the Mod Operator . This operator returns the
remainder after dividing the divisor into the dividend an integral number of times. If both
divisor and dividend are integral types, the returned value is integral. If divisor and dividend
are floating-point types, the returned value is also floating-point. The following example
demonstrates this behaviour.

When doing calculations, you must make
sure the variable on the left of the = can
store the result of the calculation on the
right.

VB.Net Consol Programming

Calculations 18

Math Functions

Visual Basic provides support for handling Mathematical calculations. Math functions are
stored in System.Math class. The following table gives some of the most useful functions.

Function Use

Math.Abs() Returns the absolute value.
Math.Abs(-10) returns 10.

Math.Ceiling() Returns an integer that is greater than or equal to a number.
Math.Ceiling(5.333) returns 6.

Fix() Returns the integer portion of a number.
Fix(5.3333) returns 5.

Math.Floor() Returns an integer that is less than or equal to a number.
Fix(5.3333) returns 5.

Int() Returns the integer portion of a number.
Int(5.3333) returns 5.

Math.Max() Returns the larger of two numbers.
Math.Max(5,7) returns 7.

Math.Min() Returns the smaller of two numbers.
Math.Min(5,7) returns 5.

Math.Pow() Returns a number raised to a power.
Math.Pow(12,2) returns 144.

Rnd() Returns a random number between 0 and 1. Used in conjunction with
Randomizestatement to initialize the random number generator.

Math.Round() Rounds a number to a specified number of decimal places. Rounds up on .5.
Math.Round(1.1234567,5) returns 1.12346.

Math.Sign() Returns the sign of a number. Returns -1 if negative and 1 if positive.
Math.Sign(-5) returns -1.

Math.Sqrt() Returns the square root of a positive number.
Math.Sqrt(144) returns 12.

Math.Sin()
Math.Cos()
Math.Tan()
Math.Asin()
Math.Acos()
Math.ATan()
Math.Sinh()
Math.Cosh()
Math.Tanh()

Trigonometry function.
Math.sin(45) returns 0.0850903524534118

Note: the result is in radians. To convert degrees to radians you multiply by 2 *pi /
360

Math.Log() Returns natural (base e) logarithm

Math.log10 Returns the base 10 logarithm

VB.Net Consol Programming

Calculations 19

Formatting numbers

If single or double numbers are displayed, you may want to have control over how that
number is formatted, e.g. show 2 decimal places.

The Format function converts a value to a text string and gives you control over the string's
appearance. For example, you can specify the number of decimal places for a numeric
value, leading or trailing zeros, currency formats, and portions of the date.

For a full list of the formatting symbols, see page 89.

Formatting Examples

Format syntax Result
Format(8315.4, "00000.00") 08315.40
Format(8315.4, "#####.##") 8315.4
Format(8315.4, "##,##0.00") 8,315.40
Format(315.4, "$##0.00") $315.40
Format(7, "0.00%") 700.00%

Format syntax Result
Format("This Is A Test", "<") this is a test
Format("This Is A Test", ">") THIS IS A TEST

Format syntax Result
Format(Now, "m/d/yy") 1/27/10
Format(Now, "dddd, mmmm dd, yyyy") Wednesday, January 27, 2010
Format(Now, "d-mmm") 27-Jan
Format(Now, "mmmm-yy") January-10
Format(Now, "hh:mm AM/PM") 07:18 AM
Format(Now, "h:mm:ss a/p") 7:18:00 a
Format(Now, "d-mmmm h:mm" 27-January 7:18
Format(Now, "d-mmmm-yy") 27-January-10
Format(Now, "d mmmm") 27 January
Format(Now, "mmmm yy") January 10
Format(Now, "hh:mm AM/PM") 08:50 PM
Format(Now, "h:mm:ss a/p") 8:50:35 p
Format(Now, "h:mm") 20:50
Format(Now, "h:mm:ss") 20:50:35
Format(Now, "m/d/yy h:mm") 1/27/93 20:50

VB.Net Consol Programming

Calculations 20

Sample Program using format
Module Module1

 Sub Main()
 Dim num1 As Single

 Console.WriteLine("Enter a number")
 num1 = Console.ReadLine()
 Console.WriteLine("The number is " & num1)
 Console.WriteLine("to 2 dp it is " & Format(num1, "####.00"))
 Console.WriteLine("As a percentage " & Format(num1, "####.00%"))
 Console.WriteLine("As currency " & Format(num1, "£####.00"))
 Console.ReadLine()

 End Sub

End Module

VB.Net Consol Programming

Calculations 21

Programming Projects

 Write a program that will read in three integers and display the sum.

 Write a program that will read two integers and display the product.

 Enter the length, width and depth of a rectangular swimming pool. Calculate the volume of
water required to fill the pool and display this volume.

 Write a program that will display random numbers between 1 and 6 until a six is generated.

 Write a program that will display six random numbers between 5 and 10.

Challenging Projects

 x \ y calculates how many times y divides into x, for example 7 DIV 3 is 2. x MOD y
calculates the remainder that results after division, for example 7 MOD 3 is 1. Write a
program that will read in two integers Number1 and Number2. Using \ and MOD, your
program should display the whole number part and the remainder of dividing Number1 by
Number2. Make the display easy to understand for the user.

 Write a program to enter an amount of money as a whole number, for example £78, and
display the minimum number of £20, £10, £5 notes and £2 and £1 coins that make up this
amount.

For example, the value £78 would give 3 twenty pound notes, 1 ten pound note, 1 five
pound note, 1 two pound coin and 1 one pound coin.

VB.Net Consol Programming

Calculations 22

Programming Projects

 Write a program that will ask the user for their first name. The program should then
concatenate the name with a message, such as 'Hello Fred. How are you?' and output this
string to the user.

 Write a program that asks the user to enter two double numbers and displays the product
of these two numbers to 2 decimal places, with user-friendly messages. (tip: see page 19
for examples)

 Calculate the area of a rectangle where the length and breadth are entered by the user.

 Calculate the area and circumference of a circle, where the radius is entered into an edit
box. The radius and area may not always be integer values.

 Create an automatic percent calculator that a teacher could use after an exam. The
teacher will enter the total number of marks and the raw score. The form them calculates
the percentage (to two decimal places).

 Create a currency converter where the number of pounds is entered and the procedure
calculates the number of Euros. Assume the exchange rate of £1 = €1.15.
Adjust your program to allow any exchange rate.

 Try to adapt program 2 to deal with a cylinder.

Area of an open cylinder is 2πrh.
 Area of a closed cylinder is 2πr(h + r)
Volume of a cylinder is πr2h

 Convert a temperature entered in Celsius to Fahrenheit where

32
5
9

+





 ×= CF

Write a program to convert a person's height in inches into centimetres and their
weight in stones into kilograms. [1 inch = 2.54 cm and 1 stone = 6.364 kg]

Challenging Projects

 Write a program to enter the length and width of a rectangular-shaped garden. Calculate
the area of the garden and the cost of turfing a lawn if a 1 m border is around the perimeter
of the garden. Assume the cost of turf is £10 per square metre. Display the result of these
calculations.

 Write a program to enter the length, width and depths at the deepest and shallowest ends
of a rectangular swimming pool. Calculate the volume of water required to fill the pool, and
display this volume.

VB.Net Consol Programming

Selection 23

6. Selection
With the selection structure, some statements are only executed if a condition has been
met.

The question asked must be a Boolean question. That is a question that can be answered
TRUE or FALSE

Comparison Operators

A comparison operator compares operands and returns a logical value based on
whether the comparison is true or not. The table below summarizes them:

Operator Use
= Equality

<> Inequality
< Less than
> Greater than

>= Greater than or equal to
<= Less than or equal to

The IF THEN statement

Module Module1
 'Program to demonstrate the IF THEN statement
 'written by KPY
 'Date 12/2/1020

 Sub Main()
 Dim grade As Integer

 Console.WriteLine("Enter your grade")
 grade = Console.ReadLine()

 If grade > 50 Then
 Console.WriteLine("You have passed")
 End If

 Console.ReadLine()
 End Sub

End Module

IF THENCondition Statements ENDIF

VB.Net Consol Programming

Selection 24

Complex conditions

A complex condition is when there are a number of questions in the condition, for example:

If the grade is greater than 50 and less than 70 then …..

This would be programmed

 If (grade > 50) AND (grade < 70) Then
 Console.WriteLine("You have passed")
 End If

When AND is used, all parts of the condition must be true to run the code.

 If (grade > 50) OR (grade < 70) Then
 Console.WriteLine("You have passed")
 End If

If the logical operator is OR, then one or the other (but not all) need to be true to run the
code

 If Not (grade < 75) Then
 Console.WriteLine("You have passed")
 End If

Logical Operators
The logical operators compare Boolean expressions and return a Boolean result. In short,
logical operators are expressions which return a true or false result over a conditional
expression. The table below summarizes them:

Operator Use
Not Negation
And All true (Conjunction)
Or At least one is true (Disjunction)
Xor One or the other is true, but not both (Disjunction)

VB.Net Consol Programming

Selection 25

The IF THEN ELSE statement

Module Module1
 'Program to demonstrate the IF THEN ELSE statement
 'written by KPY
 'Date 12/2/2010

 Sub Main()
 Dim grade As Integer

 Console.WriteLine("Enter your grade")
 grade = Console.ReadLine()

 If grade > 50 Then
 Console.WriteLine("You have passed")
 Else
 Console.WriteLine("You have failed")
 End If

 Console.ReadLine()
 End Sub

End Module

IF THENCondition Statements ENDIFELSE Statements

VB.Net Consol Programming

Selection 26

Nested If

Nested if statement helps to check multiple number of conditions. A nested statement is
one where statements are inserted inside a statement of the same type.

A nested IF statement has an IF statement inside and IF statement, inside an IF statement
…..

This is totally acceptable for a few nested statements, but if there are too may, it becomes
very hard to debug and follow the logic of the program.

 Sub Main()
 Dim grade As Integer

 Console.WriteLine("Enter a grade")
 grade = Console.ReadLine

 If grade > 80 Then
 Console.WriteLine("Grade A")
 Else
 If grade > 60 Then
 Console.WriteLine("Grade B")

 Else
 If grade > 50 Then
 Console.WriteLine("Grade C")
 Else
 Console.WriteLine("Grade U")
 End If
 End If
 End If

 Console.ReadLine()
 End Sub

As you can see, after a several nested ifs, the program looks confusing. A better solution
would be to re-write the statements using the IF ELSEIF, shown on page 27.

VB.Net Consol Programming

Selection 27

IF ELSEIF statement

Sometimes you may need to test multiple "mutually exclusive" conditions -- a series of
conditions only one of which will be true. The If...ElseIf construct tests for as many such
conditions as need to be tested. Its general format is shown below.

Notice that each ELSEIF has a condition (unlike the nested IF on the previous page)

 Sub Main()
 Dim grade As Integer

 Console.WriteLine("Enter a grade")
 grade = Console.ReadLine

 If grade > 80 Then
 Console.WriteLine("Grade A")
 ElseIf grade > 60 Then
 Console.WriteLine("Grade B")
 ElseIf grade > 50 Then
 Console.WriteLine("Grade C")
 Else
 Console.WriteLine("Grade U")
 End If

 Console.ReadLine()
 End Sub

VB.Net Consol Programming

Selection 28

Select Case

The IF statement is useful, but can get clumsy if you want to consider “multi-way
selections”. Similarly to the IF statement the Select Case tests the contents of a variable
and executes statements depending on its value.

Module Module1
 'Program to demonstrate the SELECT CASE statement
 'written by KPY
 'Date 12/2/2010

 Sub Main()
 Dim grade As Integer

 Console.WriteLine("Enter your grade")
 grade = Console.ReadLine()

 Select Case grade
 Case Is > 70
 Console.WriteLine("Grade A")
 Case 55 To 69
 Console.WriteLine("Grade B")
 Case 45 To 54
 Console.WriteLine("grade C")
 Case 41, 43
 Console.WriteLine("grade E+")
 Case 40,42,44
 Console.WriteLine("grade E-")
 Case Else
 Console.WriteLine("grade D")
 End Select

 Console.ReadLine()
 End Sub
End Module

The case statement is useful for checking that a value belongs to a list of results

 Sub Main()
 Dim month As Integer

 Console.WriteLine("Enter a month")
 month = Console.ReadLine

 Select Case month
 Case 1, 3, 5, 7, 8, 10
 Console.WriteLine("31 days")
 Case 4, 6, 9, 11
 Console.WriteLine("30 days")
 Case 2
 Console.WriteLine("28 days")
 Case Else
 Console.WriteLine("No such month")
 End Select
 Console.ReadLine()
 End Sub

VB.Net Consol Programming

Selection 29

It is also useful for checking ranges of results

 Sub Main()
 Dim letter As char

 Console.WriteLine("Enter a character")
 letter = Console.ReadLine

 Select Case letter
 Case "A" To "Z"
 Console.WriteLine("Capital letter")
 Case "a" To "z"
 Console.WriteLine("Lower case letter")
 Case "0" To "9"
 Console.WriteLine("Number")
 Case "+", "-", "*", "/"
 Console.WriteLine("Operator")
 Case Else
 Console.WriteLine("symbol")
 End Select
 Console.ReadLine()
 End Sub

VB.Net Consol Programming

Selection 30

Programming Projects

 Type in the above program into a new console application. Then test your program with the
following test data. For each set of test data:

• state the expected results,
• run the program with the test data and
• get a screen shot to show evidence.

Test Data with expected results

• Grade = 10
• Expected result = Grade U

• Grade = 80
• Expected result = Grade A

• Grade = 60
• Expected result = ………………….

• Grade = 50
• Expected result = …………………

• Grade = 110
• Expected result = …………………

• Grade = 70
• Expected result = …………………

• Grade = 45
• Expected result = …………………

Amend the grade program to that an error message is displayed if the grade is greater than
100 or less than 0.

 Write a program that will ask for a person’s age and then display a message whether they
are old enough to drive or not

 Write a program that asks the user to enter two numbers and then displays the largest of
the two numbers

 Write a program that checks whether a number input is within the range 21 to 29 inclusive
and then displays an appropriate massage.

Extend the program so a message out of range will cause a message saying whether it is
above or below the range

 Write a program that asks for three numbers and then displays the largest of the three
numbers entered

VB.Net Consol Programming

Selection 31

 Reynolds number is calculated using formula (D*v*rho)/mu Where D = Diameter, V=
velocity, rho = density and mu = viscosity

Write a program that will accept all values in appropriate units (Don't worry about unit
conversion)

• If Reynolds number is < 2100, display Laminar flow,
• If it’s between 2100 and 4000 display 'Transient flow' and
• if more than '4000', display 'Turbulent Flow' (If, else, then...)

 Write a program that asks the user for a month number and displays the number of days
that month has (ignore leap years for now).

Extend your program to include leap years. A year is a leap year if the year divides exactly
by 4, but a century is not a leap year unless it is divisible by 400. For example the year
1996 was a leap year, the year 1900 was not, the year 2000 was a leap year.
(HINT: a number is divisible by 4 if the modulus is 0)

 Write a program that lets the user enter a number between 1 and 12 and displays the
month name for that month number. The input 3 would therefore display March.

 Write a program that reads in the temperature of water in a container (in Centigrade)
and displays a message stating whether the water is frozen, boiling or neither.

 Write a program that asks the user for the number of hours worked this week and their
hourly rate of pay. The program is to calculate the gross pay. If the number of hours
worked is greater than 40, the extra hours are paid at 1.5 times the rate. The program
should display an error message if the number of hours worked is not in the range 0 to 60.

 Write a program that accepts a date as three separate integers such as 12 5 03. The
program should display the date in the form 12th May 2003.

Adapt your program to interpret a date such as 12 5 95 as 12th May 1995. Your program
should interpret the year to be in the range 1931 to 2030.

Challenge Project

 Write a program that accepts a date as three separate integers such as 12 5 03 and then
calculate is this is a valid date or not.

VB.Net Consol Programming

Iteration 32

7. Iteration
Iteration is a technical work for doing something over and over again. This saves time by
looping round code to do a task multiple times.

A loop is something that goes round and round and round. If I said move your finger
around in a loop, you'd know what to do immediately. In programming, loops go round and
round and round, too. In fact, they go round and round until you tell them to stop. You can
programme without using loops. But it's an awful lot easier with them.

FOR loop

The fore loop repeats statements a set number of time. It uses a variable to count how
many time it goes round the loop and stops when it reaches its limit.

Module Module1
 'Program to demonstrate the FOR loop
 'written by KPY
 'Date 12/2/1020

 Sub Main()
 Dim index As Integer

 For index = 1 To 20
 Console.WriteLine(index & " times 5 is " & index * 5)
 Next
 Console.ReadLine()
 End Sub

End Module

FOR =Variable start NEXTTO end Statements Variable

VB.Net Consol Programming

Iteration 33

FOR STEP loop

You may not wish to count consecutively through this loop, for example you may wish to
count every other number.

 Dim index As Integer
 '
 For index = 2 To 10 Step 2
 Console.WriteLine(index)
 Next
 '
 Console.ReadLine()
 End Sub

Or you may wish to count backwards

 Sub Main()
 Dim index As Integer
 '
 For index = 10 To 0 Step -2
 Console.WriteLine(index)
 Next
 '
 Console.ReadLine()
 End Sub

Programming Projects

 Write a program that displays the word 'Hello' on the screen 4 times on the same line using
the for loop.

 Write a program that prompts the user to enter a short message and the number of times it
is to be displayed and then displays the message the required number of times.

 Write a console application to calculate the 8 times table

 Write a console application that will ask for 10 numbers. The program will then display the
sum of these numbers and the average.

 Write a program that asks for a number, and displays the squares of all the integers
between 1 and this number inclusive.

 Write a program to display the squares of all the integers from 1 to 12 in two columns
headed 'Number' and 'Square of Number'.

 Write a program that displays all the numbers between 1 and 10,000. How long did it take
to execute?

 Write a program that displays all even numbers between 1 and 10,000. How long did it take
to execute?

VB.Net Consol Programming

Iteration 34

 Write a console application that will ask for 10 numbers. The program will then display the
max and min value entered (you will need to use an IF statement and variables to hold the
max and min values)

 n factorial, usually written n!, is defined to be the product of all the integers in the range 1 to
n:

n! = 1 * 2 * 3 * 4 * …….*n
Write a program that calculates n! for a given positive n.

Challenging Projects

 Write a program that asks for a number and converts this into a binary number. You will
need to use \ and mod.

 Write a program that shows the first 10 numbers in the Fibonacci series.

 A prime number is a number that can only be divided by the number itself and 1. Write a
program that displays all the prime numbers between 2 and 1000.

VB.Net Consol Programming

Iteration 35

WHILE loop
The wile look is known as a test before loop. The condition is tested before entering the
loop, but tested each time it goes round the loop.

The number of times the statements within the loop are executed varies. The test before
loop goes round 0 or more times.

This method is useful when processing files and using “read ahead” data

 Sub Main()
 Dim name As String

 name = Console.ReadLine()
 'Test before loop –
 'only enter the loop is name not equal "X"
 While name <> "X"
 Console.WriteLine(name)
 name = Console.ReadLine()
 End While

 End Sub

REPEAT loop

The repeat loop is similar to the while loop, but it tests the condition after the statements
have been executed once. This means that this test after loop goes round 1 or more times.

 Sub Main()
 Dim name As String

 Do
 name = Console.ReadLine()
 Console.WriteLine(name)
 Loop Until name = "X"
 'Test after loop

 End Sub

WHILE Condition Statements END WHILE

DO ConditionStatements LOOP UNTIL

VB.Net Consol Programming

Iteration 36

Programming Projects

 Write a program that reads in a series of numbers and adds them up until the user enters
zero. (This stopping value is often called a rogue value.) You may assume that at least
1 number is entered.

Expand your program to display the average as well as the sum of the numbers entered.
Make sure you do not count the rogue value as an entry.

 Write a program that asks the user for a number between 10 and 20 inclusive and will validate
the input. It should repeatedly ask the user for this number until the input is within the valid range.

Make changes to your program so it will also work if the user does not want to type in any numbers
and uses the rogue value straight away.

 Write a program that displays a conversion table for pounds to kilograms, ranging from 1
pound to 20 pounds [1 kg = 2.2 pounds].

 Write a program that asks the user to enter 8 integers and displays the largest integer.

Adapt your program so that the user can type in any number of positive integers. Input will
terminate with the rogue value of—l.

Adapt your program so that it will also display the smallest integer.

Adapt your program from if necessary, so that it works if the user types in the rogue value as
the first value

Challenge Project

 Write a game in which the user guesses what random number between 1 and 1000 the
computer has 'thought of, until he or she has found the correct number. The computer
should tell the user whether each guess was too high, too low or spot on. (TIP: use the
Maths library, which has a random function. See page 18)

VB.Net Consol Programming

Array Data Type 37

8. Array Data Type
An array is a special variable that has one name, but can store multiple values. Each value
is stored in an element pointed to by an index.

The first element in the array has index value 0, the second has index 1, etc

One Dimensional Arrays

A one dimensional array can be thought as a list. An array with 10 elements, called names,
can store 10 names and could be visualised as this:

index Element
0 Fred
1 James
2 Tom
3 Robert
4 Jonah
5 Chris
6 Jon
7 Matthew
8 Mikey
9 Jack

This array would be created by

 Dim names(9) As String
Elements indexed from 0 to 9

The statement:

 Console.WriteLine(names(1))
Will display James

 Console.WriteLine(names(7))
Will display Matthew

VB.Net Consol Programming

Array Data Type 38

Sub Main()
 'Example of a 1 Dimensional array of 10 elements
 'Written by KPY
 'Date 12/2/2020

 Dim index As Integer
 Dim names(9) As String 'declaring a 10 element array of string
 Dim grades(9) As Integer ' decalaring a 10 element array of
integer

 'Entering 10 names and grades
 For index = 0 To 9
 Console.WriteLine("Enter name " & index)
 names(index) = Console.ReadLine()
 Console.WriteLine("Enter grade for " & names(index))
 grades(index) = Console.ReadLine()
 Next index

 'Displaying the 10 names and grades
 For index = 0 To 9
 Console.WriteLine(names(index) & " has grade " &
grades(index))
 Next index
End Sub

VB.Net Consol Programming

Array Data Type 39

Programming Projects

 Write a program that reads 6 names into an array. The program must display the names in
the same order that they were entered and then in reverse order.

 Make a program that fills an array with 5 elements with values entered by the user.
Print out all elements in order.

 Make a program that first asks the user how many values to enter. The program will then
fill an array with all entered values. When all values are entered the program prints out the
highest entered value and its position (and index) in the array.

 We want to simulate throwing a die 30 times and record the scores. If we did this ‘manually'
we would end up with a tally chart:

If we use a computer to keep a count of how many times each number was thrown, we
could use an integer array (index range 1..6) instead of the tally chart. In general, a die
throw will give a score i, and we want to increment the count in the i th element.

TallyChart(i) ← TallyChart(i) + 1

Write a program to simulate the throwing of a die 30 times. The results of the

 We wish to select six random numbers between 1 and 49 with the condition that all the
numbers are different. One possible strategy, or algorithm, is.

• Initialise an array by using a for loop to store the values 1 to 49
• Repeatedly select a random element from array until a non-zero value is selected
• Display this value
• Set that element to zero
• Repeat the above three steps until six numbers have been selected.

Write a program to select six unique random numbers between 1 and 49.

 Declare two arrays, Student and DoB, to store the name of Students and their dates of
birth. For example if Fred is born on 22/12/84, then we could store 'Fred' in Student(1) and
'22/12/84' in DoB(1). To find a particular student we can use a repeat loop:

Ptr ← 0
 repeat
 Ptr ← Ptr + 1
until (Student[Ptr] = WantedStudent) OR (Ptr = 5)

Write a program that stores 5 students' names and dates of birth and then searches for a
particular student and displays that student's date of birth and current age. Display a
suitable message if the student's details cannot be found.

VB.Net Consol Programming

Array Data Type 40

 Write a program which asks the user for the subjects done in each period for each day and
then prints out the timetable with suitable headings.

 Using a two-dimensional array, write a program that stores the names of ten countries in
column 1 and their capitals in column 2. The program should then pick a random country
and ask the user for the capital. Display an appropriate message to the user to show
whether they are right or wrong.

Expand the program above to ask the user 5 questions and give a score of how many they
got right out of 5.

Challenge Projects

 Store in a 1-D array a set of 5 place names, and in a 2-D array the distances between the
places. Ensure that the order of the places is the same in both arrays. When the names of
2 places are input, the distance between them is displayed. If they are not both in the table,
a suitable message should be displayed.

 A Latin Square of order n is an n x n array which contains the numbers 1, 2, 3, ..., n such
that each row and column contain each number exactly once. For example the following
diagram shows a Latin Square of order 4. You can see that each row can be obtained from
the previous one by shifting the elements one place to the left.

Design and write a program to store such a Latin Square of a size given by the user. The
program should also display the Latin Square.

VB.Net Consol Programming

Array Data Type 41

Multi-Dimensional Arrays

A multi-dimensional array can be thought of as a table, each element has a row and
column index.

Following example declares a two-dimensional array called matrix and would be declared
by

 Dim matrix(2,3) As Integer

Usually we refer to the first dimension as being the rows, and the second dimension as
being the columns.

index 0 1 2 3
0 A B C D
1 E F G H
2 I J K L

The following statements would generate the following

 Console.WriteLine(matrix(0, 0))
Would display A

 Console.WriteLine(matrix(2, 1))
Would display J

 Console.WriteLine("first row, first column : " & matrix(2, 3))
Would display first row, first column : L

Sub Main()
 Dim matrix(2,3) As Integer

 matrix(0, 0) = 10
 matrix(1, 0) = 20
 matrix(1, 2) = 30

 Console.WriteLine("first row, first column : " & matrix(0, 0))
 Console.WriteLine("second row, first column : " & matrix(1, 0))
 Console.WriteLine("second row, second column : " & matrix(1, 1))
 Console.WriteLine("third row, third column : " & matrix(1, 2))

 Console.ReadLine()
End Sub

 Create a program that fills a two-dimensional array with ascending values.
The number of rows, the number of columns and the starting value is determined by the
user.

Print out all elements of this array.

VB.Net Consol Programming

User defined Data Type 42

9. User defined Data Type
A useful feature of most high level programming languages is the ability to create your own
data type.

Think of these as a record structure, where you define each field within the record.

If you want to store information about books, you could create a user defined data type to
store all the information about a book:

• ISBN
• Title
• Price
• Year of Publication

In VB.NET you create a user defined data type using the STRUCTURE command.

The section of code below shows how to create a data type called TBook and then create
an array of books.

Module Module1
 Structure TBook
 Dim ISBN As String
 Dim Title As String
 Dim Price As Decimal
 Dim YearOfPublication As Integer
 End Structure
 Dim books(10) As TBook
:
:
:

Each field is accessed by the statement

books(index).ISBN = Console.ReadLine()

When creating a user defined type,

it is convention to start the data

types name with T

TBook is a custom type

VB.Net Consol Programming

User defined Data Type 43

This subroutine loops entering book details into the array books.

 Sub EnterBooks()
 Dim answer As Char
 Dim index As Integer
 index = 0

 Do
 Console.WriteLine("Enter the book's details")
 Console.Write("ISBN :")
 books(index).ISBN = Console.ReadLine()
 Console.Write("Title :")
 books(index).title = Console.ReadLine()
 Console.Write("Price :")
 books(index).price = Console.ReadLine()
 Console.Write("Year of Publication :")
 books(index).YearOfPublication = Console.ReadLine()

 Console.WriteLine("Add another book? Y/N")
 answer = Console.ReadLine().ToUpper
 index = index + 1

 Loop Until (answer = "N" Or index > 10)
 BookCount = index - 1
 End Sub

VB.Net Consol Programming

Enumeration & Sets 44

10. Enumeration & Sets

Enumeration

Module Module1
 Dim x, y As Integer
 Enum Days
 sun
 Mon
 Tue
 Wed
 Thu
 Fri
 Sat
 End Enum
 Sub Main()
 x = Days.Wed
 y = Days.sun

 Console.WriteLine(x)
 Console.WriteLine(y)
 Console.ReadLine()
 End Sub

End Module

VB.Net Consol Programming

Enumeration & Sets 45

Sets

A set is a group of common values. It is the principle of any data processing; a database is
a set of records.

They are similar to a two dimensional array. After a set has been created, items can be:

• Added
• Removed
• Sorted

Just as an array, each item can be accessed by its index (index 0 is the first item in the set)

Module Module1

 Sub Main()
 Dim set1, set2, set3 As New ArrayList
 Dim initialset() = {3, 4, 5, 6, 10, 11, 12, 14, 20}
 set1.AddRange(initialset)
 Dim initialset2() = {1, 2, 3}
 set2.AddRange(initialset2)
 set1.Add(2)
 set1.Add(7)
 set1.Remove(3)

 Console.WriteLine("unsorted list")
 printlist(set1)

 set1.Sort()
 Console.WriteLine("Sorted list")
 printlist(set1)

 Console.WriteLine("List count is {0}", set1.Count)
 Console.WriteLine("List capacity of {0}", set1.Capacity)

 If set1.Contains(7) Then
 Console.WriteLine("7 is in the set")
 End If

 If Not set1.Contains(3) Then
 Console.WriteLine("3 is NOT in the set")
 End If

 Console.ReadLine()

 End Sub

 Sub printlist(ByVal mylist As ArrayList)
 For counter = 0 To (mylist.Count - 1)
 Console.WriteLine("Item " & counter & " is " &
mylist(counter))
 Next
 End Sub

End Module

VB.Net Consol Programming

String Manipulation 46

11. String Manipulation

If a variable is declared as a string, it can be manipulated in a number of ways.

Using LEN()

The Length statement returns the number of characters (including spaces and symbols)
stored in a string variable.

Len(string)

Parameter Description

string A string expression

Module Module1

 Sub Main()
 Dim textstring As String
 Dim stringlength As Integer

 textstring = "This is a text string"
 stringlength = Len(textstring)

 Console.WriteLine(stringlength)
 Console.ReadLine()
 End Sub

End Module

Would produce

VB.Net Consol Programming

String Manipulation 47

Using Left()

The Left function returns a specified number of characters from the left side of a string or
Use the Len function to find the number of characters in a string.

Left(string,length)

Parameter Description

string Required. The string to return characters from

length Required. Specifies how many characters to return. If set to 0, an empty
string ("") is returned. If set to greater than or equal to the length of the
string, the entire string is returned

Module Module1

 Sub Main()
 Dim textstring As String
 Dim leftstring As String

 textstring = "This is a text string"
 leftstring = Left(textstring, 3)

 Console.WriteLine(leftstring)
 Console.ReadLine()
 End Sub

End Module

Gives an output of “Thi” (the first 3 letters of the text string)

VB.Net Consol Programming

String Manipulation 48

Using Right()

The Right function returns a specified number of characters from the right side of a string.

Tip: Use the Len function to find the number of characters in a string.

Module Module1

 Sub Main()
 Dim textstring As String
 Dim rightstring As String

 textstring = "This is a text string"
 rightstring = Right(textstring, 3)

 Console.WriteLine(rightstring)
 Console.ReadLine()
 End Sub

End Module

Gives an output of “ing” (the last 3 letters of the text string)

VB.Net Consol Programming

String Manipulation 49

Using Mid()

The Mid function returns a specified number of characters from a string beginning from a
given starting point.

Tip: Use the Len function to determine the number of characters in a string.

Mid(string,start[,length])

Parameter Description

string Required. The string expression from which characters are returned

start Required. Specifies the starting position. If set to greater than the number
of characters in string, it returns an empty string ("")

length Optional. The number of characters to return

Module Module1

 Sub Main()
 Dim textstring As String
 Dim midstring As String

 textstring = "This is a text string"
 midstring = Mid(textstring, 6, 2)

 Console.WriteLine(midstring)
 Console.ReadLine()
 End Sub

End Module

Would display “is”

VB.Net Consol Programming

String Manipulation 50

Trimming

The LTrim function removes spaces on the left side of a string.

LTrim(string)

Parameter Description

string Required. A string expression

The RTrim function removes spaces on the right side of a string.
Tip: Also look at the LTrim and the Trim functions.

RTrim(string)

Parameter Description

string Required. A string expression

The Trim function removes spaces on both sides of a string.
Tip: Also look at the LTrim and the RTrim functions.

Trim(string)

Parameter Description

string Required. A string expression

Module Module1
 Sub Main()
 'Convert STRING to Single
 Dim stringtext As String
 Dim trimmedtext As String

 'Note space at the end and beginning of the string
 stringtext = " hello World "

 trimmedtext = LTrim(stringtext)
 Console.WriteLine("LTRIM:" & trimmedtext & ".")

 trimmedtext = RTrim(stringtext)
 Console.WriteLine("RTRIM:" & trimmedtext & ".")

 trimmedtext = Trim(stringtext)
 Console.WriteLine("TRIM:" & trimmedtext & ".")
 Console.ReadLine()
 End Sub
End Module

VB.Net Consol Programming

String Manipulation 51

Converting Strings to Numbers

If the numerical data is stored as a string variable, it needs to be converted into a number
before any calculations are performed upon it.

Sting to Integer
Converts a string to an integer (whole number)

Module Module1

 Sub Main()
 'Convert STRING to INTEGER
 Dim stringNumber As String
 Dim number As Integer

 stringNumber = "47"
 number = Convert.ToInt16(stringNumber)

 Console.WriteLine(number)
 Console.ReadLine()
 End Sub

End Module

String to Decimal
Converts a decimal number stored in a string variable to a real single precision number

Module Module1

 Sub Main()
 'Convert STRING to Single
 Dim stringNumber As String
 Dim number As Single

 stringNumber = "53.66"
 number = Convert.ToSingle(stringNumber)

 Console.WriteLine(number)
 Console.ReadLine()
 End Sub

End Module

VB.Net Consol Programming

String Manipulation 52

Converting Numbers to Strings

Use Str$ or CStr to convert a number into it's string representation. The difference between
Str$ and CStr is that Str$ will add a leading space if the number is positive.

Integer to String

 Sub Main()
 Dim num As Integer
 num = 7

 Console.WriteLine(Str$(num))
 Console.WriteLine(CStr(num))
 Console.ReadLine()
 End Sub

Single/Double to String

 Sub Main()
 Dim num As Double
 num = 2.6

 Console.WriteLine(Str$(num))
 Console.WriteLine(CStr(num))
 Console.ReadLine()
 End Sub

VB.Net Consol Programming

String Manipulation 53

Converting to and from ASCII

Use Asc to get a character's ASCII code. Use Chr to convert an ASCII code into a
character.

Converting a character to ASCII
 Sub Main()
 Dim letter As Char
 Dim ASCII As Integer

 Console.WriteLine("Enter a character")
 letter = Console.ReadLine

 ASCII = Asc(letter)

 Console.WriteLine(ASCII)
 Console.ReadLine()
 End Sub

Converting an ASCII code to a character
 Sub Main()
 Dim letter As Char
 Dim ASCII As Integer

 Console.WriteLine("Enter an ASCII code")
 ASCII = Console.ReadLine

 letter = Chr(ASCII)

 Console.WriteLine(letter)
 Console.ReadLine()
 End Sub

VB.Net Consol Programming

String Manipulation 54

String to Date

Converts a date stored in a string variable into a date.

Module Module1

 Sub Main()
 'Convert STRING to Date
 Dim stringdate As String
 Dim mydate As Date

 stringdate = "12/3/1978"
 mydate = Convert.ToDateTime(stringdate)

 Console.WriteLine(mydate)
 Console.ReadLine()
 End Sub

End Module

Changing Case

The UCase function converts a specified string to uppercase.

UCase(string)

Parameter Description

string Required. The string to be converted to uppercase

The LCase function converts a specified string to lowercase.

LCase(string)

Parameter Description

string Required. The string to be converted to lowercase

Module Module1

 Sub Main()
 'Convert STRING to Single
 Dim stringtext As String

 stringtext = "Some TeXt in MiXed cAsE"

 Console.WriteLine("As typed " & stringtext)
 Console.WriteLine("Lowercase " & LCase(stringtext))
 Console.WriteLine("Uppercase " & UCase(stringtext))

 Console.ReadLine()
 End Sub

End Module

VB.Net Consol Programming

String Manipulation 55

Time and Date Manipulation

VB.net has a number of functions that help you manipulate dates and time

To get to the date and time use the NOW() function.

Imports System.Console
Module Module1

 Sub Main()
 Dim Today, tomorrow, nextyear As Date

 Today = Now()
 WriteLine(Now)
 WriteLine("Date: " & Format(Today, "dd/mm/yy"))
 WriteLine("time: " & Format(Today, "hh:mm:ss"))

 tomorrow = Today.AddDays(1)
 WriteLine("tomorrow's date: " & Format(tomorrow, "dd/mm/yy"))

 nextyear = Today.AddYears(1)
 WriteLine("Next Year: " & Format(nextyear, "dd/mm/yy"))

 ReadLine()
 End Sub

End Module

VB.Net Consol Programming

String Manipulation 56

VB.NET Split String

You may need to Split a String in VB.NET based on a character delimiter such as " "c.

 Sub Main()
 ' The file system path we need to split
 Dim s As String = "C:\Users\Sam\Documents\Perls\Main"

 ' Dim parts As String()
 Dim parts As String() = Split(s, "\")

 Console.WriteLine(parts(1))

 Console.ReadLine()
 End Sub

Simple Split call
The code below will split a String variable based on a space character, " "c. the results
allocated to an array, New Char(), as well as a String() array to store the words in. Finally,
we loop over the Strings and display them to the Console.

Module Module1

 Sub Main()
 Dim s As String = "there is a cat"

 Dim words As String() = s.Split(New Char() {" "c})

 ' Use For Each loop over words and display them
 Dim word As String
 For Each word In words
 Console.WriteLine(word)
 Next
 End Sub

End Module

=== Output of the program ===

there
is
a
cat

The () after the variable
creates an array of an
unknown number of elements.

VB.Net Consol Programming

String Manipulation 57

Splitting parts of file path
Here we see how you can Split a file system path into separate parts. We use a New
Char() array with one string, "\""c, and then loop through and display the results.

Module Module1

 Sub Main()
 ' The file system path we need to split
 Dim s As String = "C:\Users\Sam\Documents\Perls\Main"

 ' Split the string on the backslash character
 Dim parts As String() = s.Split(New Char() {"\"c})

 ' Loop through result strings with For Each
 Dim part As String
 For Each part In parts
 Console.WriteLine(part)
 Next
 End Sub

End Module

=== Output of the program ===

C:
Users
Sam
Documents
Perls
Main

VB.Net Consol Programming

String Manipulation 58

How to split based on words
Often you need to extract the words from a String or sentence in VB.NET. The code here
needs to handle punctuation and non-word characters differently than the String Split
method. Here we use Regex.Split to parse the words.

Imports System.Text.RegularExpressions

Module Module1

 Sub Main()
 ' Declare iteration variable
 Dim s As String

 ' Loop through words in string
 Dim arr As String() = SplitWords("That is a cute cat, man!")

 ' Display each word. Note that punctuation is handled correctly.
 For Each s In arr
 Console.WriteLine(s)
 Next
 Console.ReadLine()
 End Sub

 Private Function SplitWords(ByVal s As String) As String()
 '
 ' Call Regex.Split function from the imported namespace.
 ' Return the result array.
 '
 Return Regex.Split(s, "\W+")
 End Function

End Module

=== Output of the program ===

That
is
a
cute
cat

manDescription of the example code. In the Main() subroutine you can see that two
variables are declared. The second variable is a String() array that receives the results
from the Private Function next.

Description of the Regex. The Function shown in the example calls the Regex.Split
method, which can be accessed with dot notation, with no instance necessary. The second
parameter to the method is a regular expression pattern.

Description of the Regex pattern. The pattern "\W+" is used, and this means "1 or more
non-word characters". This pattern will match punctuation and spaces. Therefore, all those
characters will be used as delimiters.

Splitting each line in a file
Here we see one way to Split each line in a file using File.ReadAllLines and Split. We have
a comma-separated-values CSV file, and want to print out each value and its row number.
Here is the input file "example.txt". Please see the below example.

VB.Net Consol Programming

String Manipulation 59

The Split code example follows. It first reads in the file with ReadAllLines. This function
puts each line in the file into an array element. The example next Splits on ","c. The final
comment shows the output of the program.

=== Input file used ===

frontal,parietal,occipital,temporal
pulmonary artery,aorta,left ventricle

=== Example program that splits lines (VB.NET) ===

Imports System.IO

Module Module1
 Sub Main()
 Dim i As Integer = 0

 ' Loop through each line in array returned by ReadAllLines
 Dim line As String
 For Each line In File.ReadAllLines("example.txt")

 ' Split line on comma
 Dim parts As String() = line.Split(New Char() {","c})

 ' Loop over each string received
 Dim part As String
 For Each part In parts
 ' Display to Console
 Console.WriteLine("{0}:{1}", i, part)
 Next
 i += 1
 Next
 End Sub
End Module

=== Output of the program ===

0:frontal
0:parietal
0:occipital
0:temporal
1:pulmonary artery
1:aorta
1:left ventricle

VB.Net Consol Programming

String Manipulation 60

Programming Projects

 Write a program that reads in a string and displays the number of characters in the string.

 Write a program that displays the ASCII code for any given character.

 Write a program that will display the character for a given ASCII code.

 Write a program that asks the user to type in a number with decimal places. The program
should then display the rounded and the truncated number.

 Write a program that asks the user for their surname and displays the surname in
uppercase letters.

 Write a program that displays today's date and formats the output appropriatly

 rite a program that reads in a date, converts it into date format, adds a day and displays the
next day's date.

Challenge projects

 Write a program that takes two letters as input and displays all the letters of the alphabet
between the two supplied letters (inclusive). For example, EJ produces EFGHIJ. The letters
are to be printed in the order in which the specified letters are supplied. GB should produce
GFEDCB. (TIP: Use the letters ASCII code – see page 53)

 Write a program that asks the user for a word, and then displays the ASCII code for each
letter in the word.

Hint: Process one character at a time, using the MID function.

 Write a program that asks the user to enter a sentence, terminated by a full stop and the
pressing of the Enter key. The program should count the number of words and display the
result.

Hint: A word will end with a space or a full stop.

 Write a palindrome tester. A palindrome is a word or sentence that reads the same
backwards as forwards. The user should enter a string and the program should display
whether the string is a palindrome or not.

VB.Net Consol Programming

Subroutines & Procedures 61

12. Subroutines & Procedures
Initially, a program was written as one monolithic block of code. The program started at the
first line of the program and continued to the end.

Program languages have now been developed to be structured. A problem can be divided
into a number of smaller subroutines (also called procedures). From within one subroutine,
another subroutine can be called and executed:

This gives the advantage of reusing common subroutines. It also makes it easier to
program, as each procedure can be tested before moving onto the next (breaking a large
problem into smaller ones).

With so many subroutines, the computer needs to know which one to execute first. In
VB.Net, the main() subroutines is always executed first. When writing programs with lots
of subroutines, it is good practice to create the subroutine before it is uses and the last
subroutine is the very last in the module

Module Module1
 Dim num1 As Integer
 Dim num2 As Integer
 Dim answer As Integer

 Sub input_sub()
 Console.Clear()
 Console.WriteLine("Enter number 1")
 num1 = Console.ReadLine
 Console.WriteLine("Enter number 2")
 num2 = Console.ReadLine
 End Sub

 Sub Calculation()
 answer = num1 * num2
 End Sub

 Sub output_sub()
 Console.Write("the product of " & num1 & " and " & num2 & " is ")
 Console.WriteLine(answer)
 Console.ReadLine()
 End Sub

 Sub Main()
 input_sub()
 Calculation()
 output_sub()
 End Sub
End Module

 Sub Main()
 Dim x As Integer
 Dim y As Integer

 x = x * 10
 y = y * x
 sort()
 End Sub

 Sub sort()
 :
 :
 End Sub

VB.Net Consol Programming

Variable Scope 62

13. Variable Scope
As described on page 7, a variable holds data while the program is running. The scope of a
variable defines where it can be seen. They are classifies as either global or local

Global Variable

A global variable is declared in a module and is accessible from any procedure or function
within that module.

Local Variables

A local variable is declared in a procedure or function and is only accessible within that
procedure of function.

Module Module1
 Dim num1 As Integer
 Dim num2 As Integer
 Dim answer As Integer

 Sub input_sub()
 Console.Clear()
 Console.WriteLine("Enter number 1")
 num1 = Console.ReadLine
 Console.WriteLine("Enter number 2")
 num2 = Console.ReadLine
 End Sub

 Sub Calculation()
 answer = num1 * num2
 End Sub

 Sub output_sub()
 Console.Write("the product of " & num1 & " and " & num2 & "
is ")
 Console.WriteLine(answer)
 End Sub

 Sub Main()
 Dim answer As Char

 Do
 input_sub()
 Calculation()
 output_sub()

 Console.WriteLine("another go? Y/N")
 answer = Console.ReadLine()
 Loop Until UCase(answer) = "N"

 End Sub

End Module

Global variables, declared before any

subroutines and are available throughout the

Local variable declared within a subroutine and

is only available within this subroutine.

VB.Net Consol Programming

Variable Scope 63

Scope of a Variable

The scope of a variable defines which subroutines can see and use a variable.

The sample code on the previous page defines the variables num1 and num2 as global;
their scope is in subroutines:

• Input_sub
• Calculations
• Output_sub

However, the variable answer twice; once as a global variable and again as a local
variable within main().

The scope of the integer version is available in:

• Input_sub
• Calculations

And the car version is available within

• Output_sub

If a global and a local variable share the same name, the local variable takes precedence.

VB.Net Consol Programming

Variable Scope 64

Explicit and Strict

VB.Net does not require you to declare variables before you use them. This can lead to
hours of wasted time as you hunt for an undeclared variable. Explicit and Strict allow you to
only use declared variables. If you try to use a variable that has not been declared with a
DIM statement, you will receive an error.

In earlier versions you may see the explicit command

Option Explicit On
Module Module1
 :
 :
 :
End Module

In VB.net 2005 onwards, you can also use strict

Option Strict On
Module Module1
 :
 :
 :
End Module

All identifiers must be declared before they can be used. The identifier can then be used in
all procedure within the parent (see diagram on page Error! Bookmark not defined.). This
is known as the scope.

If there is more than one declaration of an identifier with the same name, then the identifier
used is the one declared within the current procedure.

It is good
practice to
declare your
variables
before you
use them, so
always use
the strict on
when writing
“real”
programs

VB.Net Consol Programming

Variable Scope 65

Parameters

As mentioned above, local variables only have a lifespan of the procedure. Sometimes it is
useful to pass a value from one procedure to another. This is done by using parameters (or
arguments)

A parameter can be passed from one procedure to another by value or by reference.

By Value

The word ByVal is short for "By Value". What it means is that you are passing a copy of a
variable to your Subroutine. You can make changes to the copy and the original will not be
altered.

Module Module1

 Sub WriteSQRT(ByVal n As Double)
 n = Math.Sqrt(n)
 Console.WriteLine("n = " & n)
 End Sub

 Sub Main()
 Dim number As Double
 Console.WriteLine("Enter a number")
 number = Console.ReadLine
 WriteSQRT(number)
 Console.WriteLine("Number = " & number)
 Console.ReadLine()
 End Sub

End Module

The variable number is passed to
the subroutine WriteSQRT

This procedure us expecting a double
variable, which is known locally as n.
Any changes to n do not effect the
original variable

VB.Net Consol Programming

Variable Scope 66

By Reference
ByRef is the alternative. This is short for By Reference. This means that you are not
handing over a copy of the original variable but pointing to the original variable. Any
change you make to the variable within your subroutine will effect the variable itself.

Module Module1

 Sub WriteSQRT(ByRef n As Double)
 n = Math.Sqrt(n)
 Console.WriteLine("n = " & n)
 End Sub

 Sub Main()
 Dim number As Double
 Console.WriteLine("Enter a number")
 number = Console.ReadLine
 WriteSQRT(number)
 Console.WriteLine("Number = " & number)
 Console.ReadLine()
 End Sub

End Module

The variable number is passed to
the subroutine WriteSQRT

This procedure us expecting a double
variable, which is known locally as n.
Any changes WILL effect the original
variable

VB.Net Consol Programming

Variable Scope 67

Programming Projects

 Write and test a procedure Swap, which takes two integers as parameters and returns the
first value passed to the procedure as the second value returned by the procedure and vice
versa.

 Write and test a procedure OutputSymbols, which takes two parameters: an integer n and
a character symbol. The procedure is to display, on the same line, the symbol n times.

For example, the call OutputSymbols (5, ' # ') should display #####.

 Write and test a procedure Sort, which takes two integers as parameters and returns them
in ascending order.

 For example, if No1 contained 5 and No2 contained 3, then the call Sort(No1, No2) will
leave the value 3 in No1 and the value 5 in No2, but the call Sort(No2, No1) will leave the
variable contents as they are.

 Write a program to let the computer guess a number the user has thought of, within a
range specified by you as the programmer.

Challenge Projects

 The game 'Last one loses' is played by two players and uses a pile of n counters. Players
take turns at removing 1, 2 or 3 counters from the pile. The game continues until there are
no counters left and the winner is the one who does not take the last counter. Using
procedures, write a program to allow the user to specify n in the range 10 — 50 inclusive
and act as one player, playing at random until fewer than 5 counters remain. Try playing
against your program, and then playing to win.

 Create a procedure GetLotteryNumbers that will supply 6 unique random numbers
between 1 and 49. One possible strategy, or algorithm, is:

Initialise an array by using a for loop to store the values 1 to 49
Repeatedly select a random element from array until a non-zero value is selected
Display this value
Set that element to zero
Repeat the above three steps until six numbers have been selected.

VB.Net Consol Programming

Functions 68

14. Functions
Functions are similar to subroutines, except that they always return a value. They are
normally used in either assignments (A:=TaxA(370);) or expressions (IF taxA(15000)
THEN….)

The function names doubles as a procedure name and a variable.

 Function square(ByVal x As Integer) As Integer
 square = x * x
 End Function

Square is the function name, that is expecting an integer to be passed(byref) to it.
The result is assigned to the function name which is dimensioned as an integer. The
function name can be used as a variable containing the result within other procedures.

Module Module1

 Function square(ByVal x As Integer) As Integer
 square = x * x
 End Function

 Function sum(ByRef a As Integer, ByRef b As Integer) As Integer
 sum = a + b
 End Function

 Sub Main()
 Dim number As Double = 5

 Console.WriteLine("x = " & number)
 Console.WriteLine("Square of x is " & square(number))

 Console.WriteLine(sum(3, 7))
 Console.WriteLine(square(sum(16, 9)))

 Console.ReadLine()
 End Sub

End Module

Programming languages, such as VB.net and spreadsheets, have many functions built-in.
Examples include

SUM(range) Spreadsheet: to add a block of cell values.
lcase(string) VB: converts a string to upper case
ROUND(integer) Round the integer up
RANDOM Generate a random number

VB.Net Consol Programming

Functions 69

Programming Projects

 Write a function to convert temperatures from Fahrenheit to Celsius. The function should
take one integer parameter (the temperature in Fahrenheit) and return a real result (the
temperature in Celsius). The formula for conversion is

Centigrade = (Fahrenheit — 32) * (5 / 9)

 Write a function that converts a string passed as a parameter into a capitalised string. See
page 46 for details on string manipulation)

 Write a function that returns the total number of seconds, calculated from a whole number
of hours, minutes and seconds provided as 3 parameters.

 Write your own random function RandomNumber that returns values in the range from 1 to
the integer supplied as parameter. Tip: use the Maths library (see page 18)

 Write a tables tester. The program chooses 2 random numbers and asks the user what is
the product of these 2 numbers. If the user gets the answer wrong, the correct answer
should be displayed. The program should ask 10 questions and then display a score out of
10 and a suitable message.

VB.Net Consol Programming

Error Handling 70

15. Error Handling
When your program encounters an unexpected situation that prevents execution from
taking place, for example a division by zero, a shortage of memory or an invalid parameter
passed to a function, an error is raised. The program is interrupted and the following
actions take place :

• The Number and Description fields of the Err object are initialized respectively with
the number and description of the error.

• The call stack steps back function by function until it reaches the first active error
handler.

• If an error handler is found, control is transferred to its first line. If not, control is
returned to the system which displays a dialog box containing a description of the
error.

The following code generates an error by dividing a number by 0. The error is detected and
the program jumps to the errorhandler. A special object, called ERR contains the error
number, description and other useful information.

Module Module1

 Sub Main()

 Dim a As Integer = 4
 Dim b As Integer = 0

 On Error GoTo errorhandler

 a = a / b

 Exit Sub

errorhandler:
 Console.WriteLine("An error has occured")
 Console.WriteLine(Err.Description)
 Console.ReadLine()

 End Sub

End Module

VB.Net Consol Programming

Error Handling 71

If you want VB.net to ignore errors (a very unwise thing to do) you can use the

On Error Resume Next

Which states that if an error is encountered, VB.net ignore it and goes onto the next
statement.

Module Module1

 Sub Main()

 Dim a As Integer = 4
 Dim b As Integer = 0

 On Error Resume Next

 a = a / b

 Console.WriteLine("last line of the program")
 Console.ReadLine()

 End Sub

End Module

VB.Net Consol Programming

Using Text Files 72

16. Using Text Files

Accessing special Folders

Locations of files can vary from machine to machine or user to user. The exact location of
my Documents folder changes depending on who has logged on.

VB.net uses special system variables to hold the current users file locations, such as my
documents, desktop, My Music, etc.

To get access the these variables, you must import the system.environment library.

NOTE: Not all locations are available due to system security

Option Explicit On
Imports System.Environment

Module Module1
 Dim mydocs As String
 Dim mymusic As String
 Dim myfavorites As String

 Sub main()

 mydocs = GetFolderPath(SpecialFolder.MyDocuments)
 mymusic = GetFolderPath(SpecialFolder.MyMusic)
 myfavorites = GetFolderPath(SpecialFolder.Favorites)

 Console.WriteLine(mydocs)
 Console.WriteLine(mymusic)
 Console.WriteLine(myfavorites)
 Console.ReadLine()

 End Sub
End Module

VB.Net Consol Programming

Using Text Files 73

 Using folders
To access sub-directories, concatenate the system folder path with the folder path and/or
file name:

Option Explicit On
Imports System.Environment

Module Module1
 Dim mydocs As String
 Dim myfiles As String

 Sub main()

 mydocs = GetFolderPath(SpecialFolder.MyDocuments)
 myfiles = mydocs & "\textfiles"

 Console.WriteLine(myfiles)
 Console.ReadLine()
 End Sub
End Module

VB.Net Consol Programming

Using Text Files 74

Files using Channels

The FILEOPEN command opens a file for input or output. It used the concept of having a
filenumber to link the program to the physical file.

Reading Files (Input)

 FileOpen(1, "MyFile.txt", OpenMode.Input)

Reading a line of text
To read a line of text from the opened file

DIM LineFromFile as string

LineFromFile = LineInput(1)

Closing file
FileClose(1)

Filenumber

File name. This could
include the filepath.

Open for input

Read the line from
filenumber 1

Close filenumber 1

VB.Net Consol Programming

Using Text Files 75

Writing a line of Text
 FileOpen(1, "MyFile.txt", OpenMode.output)

Printing a line of text
The PrintLine writes a string to a text file opened with a filenumber.

 Dim LineofText As String
 LineofText = "Hello World"
 PrintLine(1, LineofText)

The above code will produce the following text file:

Writing a line of text
The Writeline writes to a textfile opened with a filenumber BUT the string is enclosed in
quotes

 Dim LineofText As String
 LineofText = "Hello World"
 Writeline(1, LineofText)

Filenumber

File name. This could
include the filepath.

Open for output

Print to filenumber 1

write to filenumber 1

VB.Net Consol Programming

Using Text Files 76

Creating CSV files with WRITELINE
The comma-separated values (CSV) file format is a file formats used to store tabular data
in which numbers and text are stored in plain textual form that can be read in a text editor,
spreadsheet or Database.

Lines in the text file represent rows of a table, and commas in a line separate what are
fields in the tables row.

The following example used the WriteLine statement to create a CSV file with 3
variables:

 Sub Main()
 Dim Field1 As String
 Dim Field2 As Integer
 Dim field3 As Double

 Field1 = "Some Text"
 field2 = 7
 field3 = 42.7

 FileOpen(1, "S:\MyFile.txt", OpenMode.Output)
 Filesystem.WriteLine(1, Field1, field2, field3)
 FileClose(1)
 End Sub

NOTE: Strings are enclosed in quotes, numbers are not enclosed in quotes

For other ways of manipulating CSV files, see page 82

Closing file
FileClose(1)

Close filenumber 1

If writeline displays the
contents on the
console rather than
writing out to file, use
filesystem.writeline.
This forces the output
to the file.

VB.Net Consol Programming

Using Text Files 77

StreamWriter with text files

Two objects StreamReader and StreamWriter are used to read and write data in a text file.

Both of these commands are stored in the System.IO library, so you will need to import it
into your programme. The following line needs to be added B System.IO by adding before
the Module definition

Imports System.IO

Option Explicit On
Imports System.IO
Imports System.Environment

Module Write

'create a variable to write a stream of characters to a text file
 Dim CurrentFileWriter As StreamWriter

 Sub Main()
 Dim FileName, TextString As String
 Dim Count As Integer

 FileName = GetFolderPath(SpecialFolder.MyDocuments) & “text.txt”
 CurrentFileWriter = New StreamWriter(FileName)
 Console.WriteLine("File being created")
 CurrentFileWriter.WriteLine("File ceated on " & Now())

 For Count = 1 To 5
 TextString = Rnd() * 100
 Console.WriteLine("Random number " & Count & " is " &
TextString)
 CurrentFileWriter.WriteLine("Random number " & Count & " is " &
TextString)
 Next

 CurrentFileWriter.Close() ' close file
 Console.WriteLine("File saved")
 Console.ReadLine()

 End Sub

End Module

VB.Net Consol Programming

Using Text Files 78

StreamReader with text files

The StreamReader can either read the contents of the whole file into a variable, or read
one line at a time.

.ReadToEnd reads the entire file into a variable
.ReadLine reads a single line (up to the CR code)

Option Explicit On used
Imports System.IO
Imports System.Environment

Module Module1
 Dim CurrentFileReader As StreamReader
 Sub Main()
 Dim FileName, TextString As String

 TextString = ""
 FileName = GetFolderPath(SpecialFolder.MyDocuments) & “text.txt”
 CurrentFileReader = New StreamReader(FileName) 'opens the file

 If File.Exists(FileName) Then
 TextString = CurrentFileReader.ReadToEnd
 Else
 Console.WriteLine("File does not exist")
 End If
 CurrentFileReader.Close() ' close file
 Console.WriteLine(TextString)
 Console.ReadLine()

 End Sub

End Module

Reading lines from a Text File

Add examples

VB.Net Consol Programming

Binary Files 79

17. Binary Files
Writing data as strings of text files is OK, but it would be more useful to write data
structures (such as records) to a file.

If you have create your own data type (see page 42) you can write these data types to a
binary file. The program knows the structure of the data type and writes records to the file
or reads them in from file.

With a binary file, you can:

• Create a binary file (see page 79)
• Write user data types to a file (see page 80)
• Append (add to the end) of a binary file (see page 81)
• Read a file of data types from file (see page 80)

All the commands are stored in the System.IO library, so you will need to import it into your
programme. The following line needs to be added B System.IO by adding before the
Module definition

Imports System.IO

Following examples this user defined data type:

 Structure TBook
 Dim ISBN As String
 Dim Title As String
 Dim Price As Decimal
 Dim YearOfPublication As Integer
 End Structure
 Dim books(10) As TBook

Creating Binary Files
 Sub CreateNewbookFile()
 Dim CurrentFile As FileStream
 Dim answer As Char

 If File.Exists(filename) Then
 Console.WriteLine("File already exists. Are you sure
you want to create a new file? Y/N")
 answer = Console.ReadLine().ToUpper

 If answer = "Y" Then
 CurrentFile = New FileStream(filename,
FileMode.Create)
 Console.WriteLine("File created")
 End If
 Else
 CurrentFile = New FileStream(filename,
FileMode.CreateNew)
 Console.WriteLine("File created")
 End If
 Console.ReadLine()
 End Sub

VB.Net Consol Programming

Binary Files 80

Writing Binary Files
 Sub writebooks()
 Dim CurrentFile As FileStream
 Dim CurrentFileWriter As BinaryWriter
 Dim index As Integer

 CurrentFile = New FileStream(FileName, FileMode.Create)
 CurrentFileWriter = New BinaryWriter(CurrentFile)

 For index = 0 To BookCount
 CurrentFileWriter.Write(books(index).ISBN)
 CurrentFileWriter.Write(books(index).title)
 CurrentFileWriter.Write(books(index).price)
 CurrentFileWriter.Write(books(index).YearOfPublication)
 Next
 CurrentFile.Close()
 CurrentFileWriter.Close()
 Console.WriteLine("Books written to file")
 Console.ReadLine()
 End Sub

Reading Binary Files
 Sub Readbooks()
 Dim CurrentFile As FileStream
 Dim CurrentFileReader As BinaryReader
 Dim index As Integer

 CurrentFile = New FileStream(filename, FileMode.Open)
 CurrentFileReader = New BinaryReader(CurrentFile)

 index = 0

 Do While CurrentFile.Position < CurrentFile.Length
 books(index).ISBN = CurrentfileReader.readstring
 books(index).title = CurrentFileReader.ReadString
 books(index).price = CurrentFileReader.ReadDecimal
 books(index).YearOfPublication =
CurrentFileReader.ReadInt32
 index = index + 1
 Loop
 BookCount = index - 1
 CurrentFile.Close()
 CurrentFileReader.Close()
 Console.WriteLine(index & "Books read from file")
 Console.ReadLine()
 End Sub

VB.Net Consol Programming

Binary Files 81

Appending to a Binary File
 Sub AppendBook()
 Dim CurrentFile As FileStream
 Dim CurrentFileWriter As BinaryWriter
 Dim index As Integer
 Dim answer As Char

 CurrentFile = New FileStream(filename, FileMode.Append)
 CurrentFileWriter = New BinaryWriter(CurrentFile)

 Do
 Console.WriteLine("Enter the book's details")
 Console.Write("ISBN :")
 books(index).ISBN = Console.ReadLine()
 Console.Write("Title :")
 books(index).title = Console.ReadLine()
 Console.Write("Price :")
 books(index).price = Console.ReadLine()
 Console.Write("Year of Publication :")
 books(index).YearOfPublication = Console.ReadLine()

 CurrentFileWriter.Write(books(index).ISBN)
 CurrentFileWriter.Write(books(index).title)
 CurrentFileWriter.Write(books(index).price)
 CurrentFileWriter.Write(books(index).YearOfPublication)

 Console.WriteLine("Add another book? Y/N")
 answer = Console.ReadLine().ToUpper
 index = index + 1

 Loop Until (answer = "N" Or index > 10)

 BookCount = index - 1

 CurrentFile.Close()
 CurrentFileWriter.Close()
 Console.WriteLine("Books written to file")
 Console.ReadLine()
 End Sub

VB.Net Consol Programming

CSV Files 82

18. CSV Files
Module Module1

 Sub Main()
 Dim textstring As String
 Dim midstring As String

 textstring = "This is a text string"
 midstring = Mid(textstring, 6, 2)

 Console.WriteLine(midstring)
 Console.ReadLine()
 End Sub

 Sub ReadCSVFileToArray()
 Dim strfilename As String
 Dim num_rows As Long
 Dim num_cols As Long
 Dim x As Integer
 Dim y As Integer
 Dim strarray(1, 1) As String

 ' Load the file.
 strfilename = "test.csv"

 'Check if file exist
 If File.Exists(strfilename) Then
 Dim tmpstream As StreamReader = File.OpenText(strfilename)
 Dim strlines() As String
 Dim strline() As String

 'Load content of file to strLines array
 strlines = tmpstream.ReadToEnd().Split(Environment.NewLine)

 ' Redimension the array.
 num_rows = UBound(strlines)
 strline = strlines(0).Split(",")
 num_cols = UBound(strline)
 ReDim strarray(num_rows, num_cols)

 ' Copy the data into the array.
 For x = 0 To num_rows
 strline = strlines(x).Split(",")
 For y = 0 To num_cols
 strarray(x, y) = strline(y)
 Next
 Next

 End If

 End Sub

End Module

VB.Net Consol Programming

CSV Files 83

VB.Net Consol Programming

Summary of VB Functions 84

19. Summary of VB Functions
Date/Time Functions

Function Description

CDate Converts a valid date and time expression to the variant of
subtype Date

Date Returns the current system date

DateAdd Returns a date to which a specified time interval has been
added

DateDiff Returns the number of intervals between two dates

DatePart Returns the specified part of a given date
DateSerial Returns the date for a specified year, month, and day

DateValue Returns a date

Day Returns a number that represents the day of the month
(between 1 and 31, inclusive)

FormatDateTime Returns an expression formatted as a date or time

Hour Returns a number that represents the hour of the day
(between 0 and 23, inclusive)

IsDate Returns a Boolean value that indicates if the evaluated
expression can be converted to a date

Minute Returns a number that represents the minute of the hour
(between 0 and 59, inclusive)

Month Returns a number that represents the month of the year
(between 1 and 12, inclusive)

MonthName Returns the name of a specified month

Now Returns the current system date and time
Second Returns a number that represents the second of the minute

(between 0 and 59, inclusive)

Time Returns the current system time
Timer Returns the number of seconds since 12:00 AM

TimeSerial Returns the time for a specific hour, minute, and second
TimeValue Returns a time

Weekday Returns a number that represents the day of the week
(between 1 and 7, inclusive)

WeekdayName Returns the weekday name of a specified day of the week

Year Returns a number that represents the year

VB.Net Consol Programming

Summary of VB Functions 85

Conversion Functions

Function Description

Asc Converts the first letter in a string to ANSI code

CBool Converts an expression to a variant of subtype Boolean

CByte Converts an expression to a variant of subtype Byte
CCur Converts an expression to a variant of subtype Currency

CDate Converts a valid date and time expression to the variant of
subtype Date

CDbl Converts an expression to a variant of subtype Double

Chr Converts the specified ANSI code to a character
CInt Converts an expression to a variant of subtype Integer

CLng Converts an expression to a variant of subtype Long
CSng Converts an expression to a variant of subtype Single

CStr Converts an expression to a variant of subtype String

Hex Returns the hexadecimal value of a specified number
Oct Returns the octal value of a specified number

Format Functions

Function Description

FormatCurrency Returns an expression formatted as a currency value
FormatDateTime Returns an expression formatted as a date or time

FormatNumber Returns an expression formatted as a number
FormatPercent Returns an expression formatted as a percentage

VB.Net Consol Programming

Summary of VB Functions 86

Math Functions

Function Description

Abs Returns the absolute value of a specified number

Atn Returns the arctangent of a specified number

Cos Returns the cosine of a specified number (angle)
Exp Returns e raised to a power

Hex Returns the hexadecimal value of a specified number
Int Returns the integer part of a specified number

Fix Returns the integer part of a specified number
Log Returns the natural logarithm of a specified number

Oct Returns the octal value of a specified number

Rnd Returns a random number less than 1 but greater or equal to
0

Sgn Returns an integer that indicates the sign of a specified
number

Sin Returns the sine of a specified number (angle)

Sqr Returns the square root of a specified number

Tan Returns the tangent of a specified number (angle)

Array Functions

Function Description

Array Returns a variant containing an array

Filter Returns a zero-based array that contains a subset of a string
array based on a filter criteria

IsArray Returns a Boolean value that indicates whether a specified
variable is an array

Join Returns a string that consists of a number of substrings in an
array

LBound Returns the smallest subscript for the indicated dimension of
an array

Split Returns a zero-based, one-dimensional array that contains a
specified number of substrings

UBound Returns the largest subscript for the indicated dimension of
an array

VB.Net Consol Programming

Summary of VB Functions 87

String Functions

Function Description

InStr Returns the position of the first occurrence of one string
within another. The search begins at the first character of the
string

InStrRev Returns the position of the first occurrence of one string
within another. The search begins at the last character of the
string

LCase Converts a specified string to lowercase
Left Returns a specified number of characters from the left side of

a string

Len Returns the number of characters in a string
LTrim Removes spaces on the left side of a string

RTrim Removes spaces on the right side of a string

Trim Removes spaces on both the left and the right side of a string
Mid Returns a specified number of characters from a string

Replace Replaces a specified part of a string with another string a
specified number of times

Right Returns a specified number of characters from the right side
of a string

Space Returns a string that consists of a specified number of spaces
StrComp Compares two strings and returns a value that represents the

result of the comparison
String Returns a string that contains a repeating character of a

specified length

StrReverse Reverses a string
UCase Converts a specified string to uppercase

VB.Net Consol Programming

Summary of VB Functions 88

Other Functions

Function Description

CreateObject Creates an object of a specified type

Eval Evaluates an expression and returns the result

GetLocale Returns the current locale ID
GetObject Returns a reference to an automation object from a file

GetRef Allows you to connect a VBScript procedure to a DHTML
event on your pages

InputBox Displays a dialog box, where the user can write some input
and/or click on a button, and returns the contents

IsEmpty Returns a Boolean value that indicates whether a specified
variable has been initialized or not

IsNull Returns a Boolean value that indicates whether a specified
expression contains no valid data (Null)

IsNumeric Returns a Boolean value that indicates whether a specified
expression can be evaluated as a number

IsObject Returns a Boolean value that indicates whether the specified
expression is an automation object

LoadPicture Returns a picture object. Available only on 32-bit platforms

MsgBox Displays a message box, waits for the user to click a button,
and returns a value that indicates which button the user
clicked

RGB Returns a number that represents an RGB color value
Round Rounds a number

ScriptEngine Returns the scripting language in use

ScriptEngineBuildVersion Returns the build version number of the scripting engine in
use

ScriptEngineMajorVersion Returns the major version number of the scripting engine in
use

ScriptEngineMinorVersion Returns the minor version number of the scripting engine in
use

SetLocale Sets the locale ID and returns the previous locale ID
TypeName Returns the subtype of a specified variable

VarType Returns a value that indicates the subtype of a specified
variable

VB.Net Consol Programming

Summary of VB Functions 89

Formatting Symbols
The Format function converts a value to a text string and gives you control over the string's
appearance. For example, you can specify the number of decimal places for a numeric value,
leading or trailing zeros, currency formats, and portions of the date.

Character Description
None

No formatting Display the number with no formatting.

:

Time separator. In some locales, other characters may be used to
represent the time separator. The time separator separates hours,
minutes, and seconds when time values are formatted. The actual
character used as the time separator in formatted output is
determined by your system settings.

/

Date separator. In some locales, other characters may be used to
represent the date separator. The date separator separates the day,
month, and year when date values are formatted. The actual
character used as the date separator in formatted output is
determined by your system settings.

C

Display the date as ddddd and display the time as t t t t t, in that
order. Display only date information if there is no fractional part to
the date serial number; display only time information if there is no
integer portion.

D Display the day as a number without a leading zero (1 - 31).

dd Display the day as a number with a leading zero (01 - 31).

ddd Display the day as an abbreviation (Sun - Sat).

dddd Display the day as a full name (Sunday - Saturday).

ddddd
Display the date as a complete date (including day, month, and
year), formatted according to your system's short date format setting.
The default short date format is m/d/yy.

dddddd

Display a date serial number as a complete date (including day,
month, and year) formatted according to the long date setting
recognized by your system. The default long date format is mmmm
dd, yyyy.

w Display the day of the week as a number (1 for Sunday through 7 for
Saturday).

ww Display the week of the year as a number (1 - 53).

m
Display the month as a number without a leading zero (1 - 12). If m
immediately follows h or hh, the minute rather than the month is
displayed.

MM
Display the month as a number with a leading zero (01 - 12). If m
immediately follows h or hh, the minute rather than the month is
displayed.

MMM Display the month as an abbreviation (Jan - Dec).

MMMM Display the month as a full month name (January - December).

q Display the quarter of the year as a number (1 - 4).

y Display the day of the year as a number (1 - 366).

yy Display the year as a 2-digit number (00 - 99).

VB.Net Consol Programming

Summary of VB Functions 90

yyyy Display the year as a 4-digit number (100 - 9666).

h Display the hour as a number without leading zeros (0 - 23).

hh Display the hour as a number with leading zeros (00 - 23).

n Display the minute as a number without leading zeros (0 - 59).

nn Display the minute as a number with leading zeros (00 - 59).

s Display the second as a number without leading zeros (0 - 59).

ss Display the second as a number with leading zeros (00 - 59).

t t t t t

Display a time as a complete time (including hour, minute, and
second), formatted using the time separator defined by the time
format recognized by your system. A leading zero is displayed if the
leading zero option is selected and the time is before 10:00 A.M. or
P.M. The default time format is h:mm:ss.

AM/PM
Use the 12-hour clock and display an uppercase AM with any hour
before noon; display an uppercase PM with any hour between noon
and 11:59 P.M.

am/pm
Use the 12-hour clock and display a lowercase AM with any hour
before noon; display a lowercase PM with any hour between noon
and 11:59 P.M.

A/P
Use the 12-hour clock and display an uppercase A with any hour
before noon; display an uppercase P with any hour between noon
and 11:59 P.M.

a/p
Use the 12-hour clock and display a lowercase A with any hour
before noon; display a lowercase P with any hour between noon and
11:59 P.M.

AMPM

Use the 12-hour clock and display the AM string literal as defined by
your system with any hour before noon; display the PM string literal
as defined by your system with any hour between noon and 11:59
P.M. AMPM can be either uppercase or lowercase, but the case of the
string displayed matches the string as defined by your system
settings. The default format is AM/PM.

0
Digit placeholder

Display a digit or a zero. If the expression has a digit in the position
where the 0 appears in the format string, display it; otherwise,
display a zero in that position. If the number has fewer digits than
there are zeros (on either side of the decimal) in the format
expression, display leading or trailing zeros. If the number has more
digits to the right of the decimal separator than there are zeros to the
right of the decimal separator in the format expression, round the
number to as many decimal places as there are zeros. If the number
has more digits to the left of the decimal separator than there are
zeros to the left of the decimal separator in the format expression,
display the extra digits without modification.

Digit placeholder

Display a digit or nothing. If the expression has a digit in the position
where the # appears in the format string, display it; otherwise,
display nothing in that position. This symbol works like the 0 digit
placeholder, except that leading and trailing zeros aren't displayed if
the number has the same or fewer digits than there are # characters
on either side of the decimal separator in the format expression.

.
Decimal

placeholder

In some locales, a comma is used as the decimal separator. The
decimal placeholder determines how many digits are displayed to
the left and right of the decimal separator. If the format expression
contains only number signs to the left of this symbol, numbers

VB.Net Consol Programming

Summary of VB Functions 91

smaller than 1 begin with a decimal separator. If you always want a
leading zero displayed with fractional numbers, use 0 as the first
digit placeholder to the left of the decimal separator instead. The
actual character used as a decimal placeholder in the formatted
output depends on the Number Format recognized by your system.

%
Percent

placeholder

The expression is multiplied by 100. The percent character (%) is
inserted in the position where it appears in the format string.

,
Thousand
separator

In some locales, a period is used as a thousand separator. The
thousand separator separates thousands from hundreds within a
number that has four or more places to the left of the decimal
separator. Standard use of the thousand separator is specified if the
format contains a thousand separator surrounded by digit
placeholders (0 or #). Two adjacent thousand separators or a
thousand separator immediately to the left of the decimal separator
(whether or not a decimal is specified) means "scale the number by
dividing it by 1000, rounding as needed." You can scale large
numbers using this technique. For example, you can use the format
string "##0,," to represent 100 million as 100. Numbers smaller than
1 million are displayed as 0. Two adjacent thousand separators in
any position other than immediately to the left of the decimal
separator are treated simply as specifying the use of a thousand
separator. The actual character used as the thousand separator in
the formatted output depends on the Number Format recognized by
your system.

:
Time separator

In some locales, other characters may be used to represent the time
separator. The time separator separates hours, minutes, and
seconds when time values are formatted. The actual character used
as the time separator in formatted output is determined by your
system settings.

/
Date separator

In some locales, other characters may be used to represent the date
separator. The date separator separates the day, month, and year
when date values are formatted. The actual character used as the
date separator in formatted output is determined by your system
settings.

E- E+ e- e+
Scientific format

If the format expression contains at least one digit placeholder (0 or
#) to the right of E-, E+, e-, or e+, the number is displayed in
scientific format and E or e is inserted between the number and its
exponent. The number of digit placeholders to the right determines
the number of digits in the exponent. Use E- or e- to place a minus
sign next to negative exponents. Use E+ or e+ to place a minus sign
next to negative exponents and a plus sign next to positive
exponents.

- + $ () space
Display a literal

character

To display a character other than one of those listed, precede it with
a backslash (\) or enclose it in double quotation marks (" ").

\
Display the next
character in the

format string

Many characters in the format expression have a special meaning
and can't be displayed as literal characters unless they are preceded
by a backslash. The backslash itself isn't displayed. Using a
backslash is the same as enclosing the next character in double
quotation marks. To display a backslash, use two backslashes (\).
Examples of characters that can't be displayed as literal characters
are the date- and time-formatting characters (a, c, d, h, m, n, p, q, s,
t, w, y, and /:), the numeric-formatting characters (#, 0, %, E, e,
comma, and period), and the string-formatting characters (@, &, <,
>, and !).

VB.Net Consol Programming

Summary of VB Functions 92

"ABC"
Display the string
inside the double
quotation marks

To include a string in format from within code, you must use Chr(34)
to enclose the text (34 is the character code for a double quotation
mark).

@
Character

placeholder

Display a character or a space. If the string has a character in the
position where the @ appears in the format string, display it;
otherwise, display a space in that position. Placeholders are filled
from right to left unless there is an ! character in the format string.
See below.

&
Character

placeholder

Display a character or nothing. If the string has a character in the
position where the & appears, display it; otherwise, display nothing.
Placeholders are filled from right to left unless there is an ! character
in the format string. See below.

<
Force lowercase Display all characters in lowercase format.

>
Force uppercase Display all characters in uppercase format.

!
Force left to right
fill of placeholders

The default is to fill from right to left.

Named Formats

Visual Basic provides several standard formats to use with the Format function. Instead of
using symbols, you specify these formats by name in the format argument of the Format
function. Always enclose the format name in double quotation marks (""). The following
table lists the format names you can use.

Named format Description
General
Number Shows numbers as entered.

Currency Shows negative numbers inside parentheses.

Fixed Shows at least one digit.

Standard Uses a thousands separator.

Percent Multiplies the value by 100 with a percent sign at the end.

Scientific Uses standard scientific notation.

General Date Shows date and time if expression contains both. If expression is only a
date or a time, the missing information is not displayed.

Long Date Uses the Long Date format specified in the Regional Settings dialog box
of the Microsoft Windows Control Panel.

Medium Date Uses the dd-mmm-yy format (for example, 03-Apr-93)

Short Date Uses the Short Date format specified in the Regional Settings dialog box
of the Windows Control Panel.

Long Time Shows the hour, minute, second, and "AM" or "PM" using the h:mm:ss
format.

Medium Time Shows the hour, minute, and "AM" or "PM" using the "hh:mm AM/PM"
format.

Short Time Shows the hour and minute using the hh:mm format.

VB.Net Consol Programming

Summary of VB Functions 93

Yes/No Any nonzero numeric value (usually - 1) is Yes. Zero is No.

True/False Any nonzero numeric value (usually - 1) is True. Zero is False.

On/Off Any nonzero numeric value (usually - 1) is On. Zero is Off.

	1. Introduction
	Visual Basic Express
	Computer System
	Programming structures
	Creating a Console Application
	Saving your Project
	Opening a Project

	2. Variables
	Declaring Variables
	Declaring Multiple Variables
	Constants
	Data types
	Basic Data Types
	Full list of Data Types

	Examples

	3. Input & output
	Programming Projects
	Writing multiple values

	4. Adding Comments
	5. Calculations
	Operators
	Examples

	Math Functions
	Formatting numbers
	Formatting Examples
	Sample Program using format
	Programming Projects
	Challenging Projects

	Programming Projects
	Challenging Projects

	6. Selection
	Comparison Operators
	The IF THEN statement
	Complex conditions
	Logical Operators

	The IF THEN ELSE statement
	Nested If
	IF ELSEIF statement
	Select Case
	Programming Projects
	Challenge Project

	7. Iteration
	FOR loop
	FOR STEP loop
	Programming Projects
	Challenging Projects

	WHILE loop
	REPEAT loop
	Programming Projects
	Challenge Project

	8. Array Data Type
	One Dimensional Arrays
	Programming Projects
	Challenge Projects

	Multi-Dimensional Arrays

	9. User defined Data Type
	10. Enumeration & Sets
	Enumeration
	Sets

	11. String Manipulation
	Using LEN()
	Using Left()
	Using Right()
	Using Mid()
	Trimming
	Converting Strings to Numbers
	Sting to Integer
	String to Decimal

	Converting Numbers to Strings
	Integer to String
	Single/Double to String

	Converting to and from ASCII
	Converting a character to ASCII
	Converting an ASCII code to a character

	String to Date
	Changing Case
	Time and Date Manipulation
	VB.NET Split String
	Simple Split call
	Splitting parts of file path
	How to split based on words
	Programming Projects
	Challenge projects

	12. Subroutines & Procedures
	13. Variable Scope
	Global Variable
	Local Variables
	Scope of a Variable
	Explicit and Strict
	Parameters
	By Value
	By Reference
	Programming Projects
	Challenge Projects

	14. Functions
	Programming Projects

	15. Error Handling
	16. Using Text Files
	Accessing special Folders
	 Using folders

	Files using Channels
	Reading Files (Input)
	Reading a line of text
	Closing file
	Writing a line of Text
	Printing a line of text
	Writing a line of text
	Creating CSV files with WRITELINE
	Closing file

	StreamWriter with text files
	StreamReader with text files
	Reading lines from a Text File

	17. Binary Files
	Creating Binary Files
	Writing Binary Files
	Reading Binary Files
	Appending to a Binary File

	18. CSV Files
	19. Summary of VB Functions
	Date/Time Functions
	Conversion Functions
	Format Functions
	Math Functions
	Array Functions
	String Functions
	Other Functions
	Formatting Symbols
	Named Formats

